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OUTLINE / SUMMARY

Definition of jJumpiness
— Changes in forecast error

« Magnitude

- Pattern

Forecaster’s desire
— Small error
— Low jumpiness

NWP principles

— Jumpiness increases in single forecast as error variance is decreased

Solution

— Ensemble forecasting
* Must be “jump-free”

Measure of jJumpiness

— Time consistency histogram
- After analysis rank (Talagrand) histogram



BACKGROUND

Definition of forecast jumpiness

t}?eerne ﬁucgesswe forecasts for same verifying event (in time/space) look

— Error in successive forecasts are different
- Either size or pattern of error

NWP forecast error characteristics

- Orlgmate from imperfect
Initial conditions
* Numerical models

— Amplify due to chaotic dynamics

Some model related errors may be systematic

— Stable from one initial condition to next
* Not necessarily major source of forecast jumpiness?

Successive initial conditions may have errors different in
— Size or
— Patterns — Focus of discussion

Jumpiness is not verification statistic
— Diagnostic of a DA/forecast system

Verification metrics traditionally focus on error variance only
— Not error pattern



JUMPINESS & USERS

Objective of NWP development
— Reduce forecast error variance

Reduced error variance equals to
— Reduced jumpiness in amplitude of errors

Measure of forecast jumpiness at a given level of error variance

— How correlated error patterns are in successive forecasts verifying at
same time/space

Preference of some/most/all (?) forecasters

— NO JUMPINESS in error patterns
+ Users don't like big changes in forecasts

Jumpiness is limitation of single value forecasts

— Represent only one scenario
* Do not convey forecast uncertainty

Proper and only defendable format of forecasts
— Probabilistic
 Practical solution - Ensembles



JUMPINESS & NWP

Is jumpiness a good or bad diagnostic feature for NWP
systems?

Good observing and analysis system

— Error in analysis should be uncorrelated to error in background forecast
=>
« High jumpiness is necessary condition for good observing/DA systems
— Not sufficient as low error variance is also a necessary condition

Forecasters’ desire for low jumpiness contradicts NWP
principles
— Lowering error variance necessarily leads to increased jumpiness

Goal is to increase jumpiness, that’s an artifact of decreasing
error variance
— Removing temporally correlated errors from DA/forecast system
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CORRELATION BETWEEN ANALYSIS & FORECAST ERRORS

Analysis-Forecast errar Correlation
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JUMPINESS & ENSEMBLE FORECASTS

Jumpiness is a virtue of single (control) NWP forecasts
— lIs it true for ensembles?

Ensembles designed to capture forecast uncertainty

— Successive ensembles must convey reduced uncertainty
- Shorter range ensemble cloud must statistically lay within longer range cloud

How to measure if an ensemble performs as it should?

Method related to how we assess statistical consistency between
ensemble and verifying analysis

— Analysis Rank (or Talagrand) Histogram

Measure temporal consistency in successive ensembles
— Time consistency histogram

Toth, Z., O. Talagrand, G. Candille, and Y. Zhu, 2002: Probability and ensemble
forecasts (final draft). In: Environmental Forecast Verification: A practitioner's

guide in atmospheric science. Ed.: I. T. Jolliffe and D. B. Stephenson. Wiley, pp.
137-164.

Role of analysis taken by members in succeeding ensemble



ANALYSIS RANK HISTOGRAM
MEASURE OF RELIABILITY

VERIFYING ANALYSIS
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Percentage above/below zero (T—1)

EXAMPLE FOR 3 ENSEMBLES

Percentage Excessive Outliers of That Expected
for SH 500 mb Height Talagrand Distribution
Average For 00Z01D

C2008 - 00Z28FEB2009
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Forecast days

Canadian
«  Ensemble filter

-  Low time consistency between
successive perturbations

* Noise added to observations
ECMWF
- Singular vectors
+ Too low spread at short lead time

*  No time consistency between
successive perturbations

RMS errors

SH 500 mb Height
Average For 00Z0O1DEC2008 - 00Z28FEB2009
dot—control solid—10 ensembles mean
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Forecast days

NCEP
+  Ensemble Transform
«  Strong time conistency
*  No noise added
«  No model related perturbations

Zhu et al



OUTLINE / SUMMARY

Definition of jJumpiness
— Changes in forecast error

« Magnitude

- Pattern

Forecaster’s desire
— Small error
— Low jumpiness

NWP principles

— Jumpiness increases in single forecast as error variance is decreased

Solution

— Ensemble forecasting
* Must be “jump-free”

Measure of jJumpiness

— Time consistency histogram
- After analysis rank (Talagrand) histogram
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OUTLINE / SUMMARY

Sources of forecast errors
— Initial condition — Observing system, DA
— Model / ensemble formation

How to assess forecast errors?

— Error statistics from single forecasts — Statistical approach

— Ensembles — Dynamical approach

— Statistically post-processed ensembles — Dynamical-statistical approach

Statistical post-processing of ensembles
— Bias correction, merging, downscaling, derivation of variables

Ensemble database

— Summary statistics — Phase-1
— Full ensemble data — Phase-2
— All queries about weather can be answered

Examples
— Ensemble over West Coast of US (SF)
— Display / decision tools



NUMERICAL WEATHER PREDICTION (NWP) BASICS

COMPONENTS OF NWP
» Create initial condition reflecting state of the atmosphere, land, ocean
» Create numerical model of atmosphere, land, ocean

ANALYSIS OF ERRORS
« Errors present in both initial conditions and numerical models

* Coupled atmosphere / land / ocean dynamical system is chaotic
— Any error amplifies exponentially until nonlinearly saturated

— Error behavior is complex & depends on

* Nature of instabilities
* Nonlinear saturation

IMPACT ON USERS

» Analysis / forecast errors negatively impact users
— Impact is user specific (user cost / loss situation)

» Information on expected forecast errors needed for rational decision making
— Spatial/temporal/cross-variable error covariance needed for many real life applications
— How can we provide information on expected forecast errors?



WHAT INFORMATION USERS NEED

General characteristics of forecast users

— Each user affected in specific way by
« Various weather elements at
 Different points in time &

« Space

Requirements for optimal decision making for weather sensitive operation

— Probability distributions for single variables
» Lack of information on cross-correlations

— Covariances needed across
» Forecast variables, space, and time

Format of weather forecasts
— Joint probability distributions
» Provision of all joint distributions possibly needed by users is intractable
— Encapsulate best forecast info into calibrated ensemble members

» Possible weather scenarios
— 6-Dimensional Data-Cube (6DDC)
» 3 dimensions for space, 1 each for time, variable, and ensemble members

Provision of weather information
— Ensemble members for sophisticated users
» Other types of format derived from ensemble data
— All forecast information fully consistent with calibrated ensemble data



HOW CAN WE REDUCE & ESTIMATE
EXPECTED FORECAST ERRORS?

STATISTICAL APPROACH

« Statistically assess errors in past unperturbed forecasts (eg, GFS, RUC)
— Can correct for systematic errors in expected value
— Can create probabilistic forecast information — Eg, MOS PoP
« Limitation
— Case dependent variations in skill not captured
— Error covariance information practically not attainable

DYNAMICAL APPROACH - Ensemble forecasting

« Sample initial & model error space - Monte Carlo approach
— Leverage DTC Ensemble Testbed (DET) efforts

* Prepare multiple analyses / forecasts —
— Case dependent error estimates
— Error covariance estimates

« Limitation
— Ensemble formation imperfect — not all initial / model errors represented

DYNAMICAL-STATISTICAL APPROACH

« Statistically post-process ensemble forecasts
— Good of both worlds
— How can we do that?



AVIATION EXAMPLE

Recovery of a carrier from weather related disruptions

— Operational decisions depend on multitude of factors
« Based on United / Hemispheres March 2009 article, p. 11-12

Factors affecting operations
— Weather — multiple parameters
* Over large region / CONUS during coming few days
— Federal regulations / aircraft limitations
» Dispatchers / load planners
— Aircraft availability
« Scheduling / flight planning
— Maintenance
» Pre-location of spare parts & other assets where needed
— Reservations
« Rebooking of passengers
— Customer service
« Compensation of severely affected customers

How to design economically most viable operations?
— Given goals / requirements / metrics / constraints



SELECTION OF OPTIMAL USER PROCEDURES

Generate ensemble weather scenarios e, i =1, n

Assume weather is e, define optimal operation procedures o,
Assess cost/loss ¢; using o; over all weather scenarios e,
Select o, with minimum expected (mean) cost/loss ¢, over e.,...

e, as optimum operation

)
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USER REQUIREMENTS FOR QUALITY

 Statistical resolution (“predictive skill”)
— Seek highest possible skill in ensemble of forecasts

— Need to extract and fuse all predictive information

« Ensembles, high resolution unperturbed forecasts,
observations, etc

« Statistical reliability

— Need to make ensemble members statistically
indistinguishable from reality
« Correct systematic errors (first moment correction)
» Assess error statistics (higher moment corrections)
« Use climatology as background information



FORECAST QUALITY - REALITY

Useful forecast info to ~20 days w. 20-80 km res. NWP models

Imperfect models used

— Model specific drift (lead-time dependent systematic error)

* Need unconditional bias correction of each member on model grid
— Solution, eg: Bayesian Pre-Processor (BPP)

Imperfect ensemble formation

— Forecasts are correlated, have various levels of skill, and form
uncalibrated cfd (spread)

» Need to optimally fuse all predictive info into calibrated posterior cdf
— Solution, eg: Bayesian Processor of Ensembles (BPE)

Stat. post-processing works on distribution of variables

— Raw ensemble members inconsistent with posterior cdf
* Need to adjust ensemble members to be consistent with posterior cdf
— Solution, eg: Members “mapped” into posterior quantiles

NWP models don’t resolve variables of interest to user

— Information missing on fine time/spatial scales, further vars.

* Need to relate NWP forecast info to user variables
— Solution, eg: Bayesian downscaling to fine resolution grid



STATISTICAL POST-PROCESSING

 Problem
— Relate coarse resolution biased forecast to user relevant fine resolution
information
- Tasks broken up to facilitate collaboration / transition to operations

— Bias correct coarse resolution ensemble grid wrt NWP analysis

« Cheap
- Sample of forecasts / hind-casts needed

— Merge various guidance
« Fuse all predictive info into “unified ensemble”

— Create observationally based fine resolution analysis
- Estimate of truth

— Downscale bias-corrected ensemble forecast

- Relate coarse resolution NWP and fine resolution observationally based analyses
— Perfect prog approach - No need for hind-casts

— Derive additional variables — AlVs
- Based on bias corrected & downscaled ensemble
« QOutcome
— Skillful and statistically reliable ensemble of AlV variables on fine grid



00hr GEFS Ensemble Mean & Bias Before/After Downscaling 10%
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ENSEMBLE DATABASE

- Depository / access

— Create unified NOAA digital ensemble forecast database
- Summary statistics from ensemble
— E.g., 10/50/90 percentile forecasts - Pase 1
+ All ensemble members
— E.g., 20-100 members - Phase 2
— Provide easy access to internal / external users
- Seamless forecasts across lead time ranges
« Many applications beyond NEXTGEN

— Part of 4D-Cube
* Relationship with SAS?

- Interrogation / forecaster tools
— Modify summary statistics
— Back-propagate modified information into ensemble

— Derive any information from summary statistics / ensembles
- All queries about weather can be answered
— Joint probabilities, spatial/temporal aggregate variables, etc



Ensemble Prediction System Development for
Aviation and other Applications

Isidora Jankov



BACKGROUND

* Objective
* Develop fine scale ensemble forecast system

* Application areas
 Aviation (SF airport)
* Winter precipitation (CA & OR coasts)
« Summer fire weather (CA)

* Potential user groups

 Aviation industry, transportation, emergency and
ecosystem management, etc



EXPERIMENTAL DESIGN 2009-2010

Nested domain:

 Quter/inner nest grid spacing 9 and 3 km, respectively.

* 6-h cycles, 120hr forecasts foe the outer nest and 12hr forecasts for the inner nest

* 9 members (listed in the following slide)

* Mixed models, physics & perturbed boundary conditions from NCEP Global Ensemble

* 2010-2011 season everything stays the same except initial condition perturbations?



QPF

Example of 24-h QPF
9-km resolution

9 members:

ARW-TOM-GEPO
ARW-FER-GEP1
ARW-SCH-GEP2
ARW-TOM-GEP3
NMM-FER-GEP4
ARW-FER-GEP5
ARW-SCH-GEP6
ARW-TOM-GEP7
NMM-FER-GEP8
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Reliability of 24-h PQPF

Reliability diagrams of 24-h
PQPF

9-km resolution

Dec 2009 - Apr 2010

Observed frequency vs
forecast probability
Overforecast of PQPF
Similar performance for
different lead times

Brier skill score (BSS):
Reference brier score is
Stage IV sample climatology
BSS is only skilful for 24-h
lead time at all thresholds
and for 0.01 inch/24-h
beyond 24-h lead time.
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West-East XCs of Cloud Liquid through the San Francisco Area for
Model runs initialized on 28 Sept. 2010 at 18UTC
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Cloud / Reflectivity / Precip Type (1km analysis)
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Analysis of Visibility for the period 18 UTC 28 Sept. 2010 to
O0UTC 29 Sept. 2010
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Personal Weather Advisor (concepripea)
Decision Support in Weather-Sensitive Situations
PaUIa MCC8$|IH and Kirk Holub, NOAA Earth Systems Research Laboratory

GSD Initiative

«Exploratory web-based decision support tool

«Decision guidance based on individual requirements for a given activity, in
weather sensitive situations

-Risk assessment interface, including economic (cost-loss) module

-Risk tolerance affects Yes/No decision guidance by associating (calibrated)
forecast uncertainty and risk limits

.Results created on demand



V Earth System Research Laboratory

Personal Weather Advisor (PWA)

{ Home _M ThresholdsW[ Risks W[ PreferencesW{ Contact W

Decision Support in Weather Sensitive Situations

Yes/No Decision Guidance for a planned activity

Wed Thu Fri Sat
05/06 05/07 05/08 05/'09

Welcome to the Personal Weather Advisor (PWA). Click on the Thresholds
tab above to enter the range of weather parameters required for your

activity. Then, Save the information and click on Google MapsTM for a
location marker in the area you are interested in.

PWA gives you guidance on your activitiy based on the associated risk limit
you are willing to take. Click on the Risks tab above for help assessing the
risk you are willing to take for your activity.

This will query the forecast grids to find when your weather requirements will be met at the
nearest grid point over the next 5 days giving you a Yes or No answer.

This application generates products from a ensemble forecast data base. It is intended to
allow a user to define and produce a forecast for general planning purposes only. Customers
are urged to obtain the latest official forecast information prior to engaging in any weather
sensitive activity, and to monitor forecasts for updates during such activities.
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Earth System Research Laboratory

Personal Weather Advisor (PWA)

{ Home —M ThresholdsW[ Risks W[ PreferencesW( Contact?

— Set Critical Thresholds & Risk Factors

Temperature| do not go below [3] 0.0 “C using risk limit 30 %
Wind Speed [ remain between 1¥] 5.0 m/sand 20.0 m/s using risk limit 95 %

Precipitation| do not exceed 4] 1.0 mm using risk limit| 10 %
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OUTLINE / SUMMARY

Sources of forecast errors
— Initial condition — Observing system, DA
— Model / ensemble formation

How to assess forecast errors?

— Error statistics from single forecasts — Statistical approach

— Ensembles — Dynamical approach

— Statistically post-processed ensembles — Dynamical-statistical approach

Statistical post-processing of ensembles
— Bias correction, merging, downscaling, derivation of variables

Ensemble database

— Summary statistics — Phase-1
— Full ensemble data — Phase-2
— All queries about weather can be answered

Examples
— Ensemble over West Coast of US (SF)
— Display / decision tools
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MDL GMOS & NAEFS Downscaled Forecast
Mean Absolute Error w. rt RTMA Average For Sept 2007

Valery Dagostaro, Kathy G/lben‘
Bo Cui, Yuejian Zhu
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Optimizing the HCPF algorithm

Instantaneous reflectivity suffers from phase errors
Collecting the hourly maximum increases coverage, providing an
excellent predictor
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Optimizing the HCPF algorithm

HRRR updraft velocity and reflectivity are strongly correlated,
but the updraft field can more easily distinguish between

Hourly max 1 . =
updraft velocity ¥ Y 1 1km reflectivity %3



Optimizing the HCPF algorithm

Early versions of the HCPF had inconsistent skill, with
large bias swings throughout the diurnal convective cycle

Analytic updraft threshold function, target bias = 2.5
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HCPF probability verification

Verification period: August 2009, Comprising 540 ensemble forecasts

40% probability verified on a 4-km grid

CSI versus lead time CSl versus valid time (6-hour forecasts)
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Highest overall skill (and largest gap between one and multiple members) occurs
around 06 UTC when convection evolves upscale.
Double minima in skill: early morning hours, and midday convective initiation.



HCPF probability verification

40% probability verified on a 4-km grid

Bias versus lead time CSI versus bias
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With more members, similar or slightly higher skill can be obtained, while
substantially reducing bias.



Summary

« HRRR can provide an estimate of the likelihood (probability), timing, and
location of convection through a time-lagged “ensemble-of-opportunity”

* HRRR convective probabilistic forecast (HCPF) shown to have comparable skill to
other convective forecasts including the RUC convective probabilistic forecast
(RCPF) and the Collaborative Convective Forecast Product (CCFP)

 Key challenge is under-forecasting moist convection (low bias/PoD) in weakly
forced regions of convection (summer season) in early afternoon

« Improvements to HCPF under-forecast problem can be made through a variety
of techniques including “time-smeared” forecasts, larger search radii, lower
detection thresholds and limiting the ensemble to the more recent members



Where to go from here

« Incorporate deterministic forecast from recent member(s) to convey convective
mode and complement probabilities to indicate likelihood

* Perform logistic regression to make probabilities statistically reliable while
preserving sharpness/resolution to the forecasts

 Apply time-lagged ensemble to short-fuse forecast probabilities of other events
such as high wind, hail, tornadoes, flash flooding, heavy ice/snow, fires

« Add additional ensemble members with different physics, initialized at same
time, to improve HCPF which leads to...

 HRRR ensemble a.k.a. HRRRE in co-development between ESRL and National
Centers for Environmental Prediction (NCEP) over the next 5 years



