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OUTLINE / SUMMARY!
•  Definition of jumpiness!

–  Changes in forecast error!
•  Magnitude!
•  Pattern!

•  Forecasterʼs desire!
–  Small error!
–  Low jumpiness!

•  NWP principles!
–  Jumpiness increases in single forecast as error variance is decreased!

•  Solution!
–  Ensemble forecasting!

•  Must be “jump-free”!

•  Measure of jumpiness!
–  Time consistency histogram!

•  After analysis rank (Talagrand) histogram!
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BACKGROUND!
•  Definition of forecast jumpiness!

–  When successive forecasts for same verifying event (in time/space) look different =>!
–  Error in successive forecasts are different!

•  Either size or pattern of error!

•  NWP forecast error characteristics!
–  Originate from imperfect!

•  Initial conditions!
•  Numerical models!

–  Amplify due to chaotic dynamics!

•  Some model related errors may be systematic!
–  Stable from one initial condition to next!

•  Not necessarily major source of forecast jumpiness?!

•  Successive initial conditions may have errors different in !
–  Size or !
–  Patterns – Focus of discussion!

•  Jumpiness is not verification statistic!
–  Diagnostic of a DA/forecast system!

•  Verification metrics traditionally focus on error variance only!
–  Not error pattern!
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JUMPINESS & USERS!
•  Objective of NWP development!

–  Reduce forecast error variance!

•  Reduced error variance equals to!
–  Reduced jumpiness in amplitude of errors!

•  Measure of forecast jumpiness at a given level of error variance!
–  How correlated error patterns are in successive forecasts verifying at 

same time/space !

•  Preference of some/most/all (?) forecasters!
–  NO JUMPINESS in error patterns!

•  Users donʼt like big changes in forecasts!

•  Jumpiness is limitation of single value forecasts!
–  Represent only one scenario!

•  Do not convey forecast uncertainty!

•  Proper and only defendable format of forecasts!
–  Probabilistic!

•  Practical solution - Ensembles!
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JUMPINESS & NWP!

•  Is jumpiness a good or bad diagnostic feature for NWP 
systems?!

•  Good observing and analysis system!
–  Error in analysis should be uncorrelated to error in background forecast 

=>!
•  High jumpiness is necessary condition for good observing/DA systems!

–  Not sufficient as low error variance is also a necessary condition!

•  Forecastersʼ desire for low jumpiness contradicts NWP 
principles!
–  Lowering error variance necessarily leads to increased jumpiness!

•  Goal is to increase jumpiness, thatʼs an artifact of decreasing 
error variance!
–  Removing temporally correlated errors from DA/forecast system!
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EXAMPLE OF GLOBAL NWP FORECASTS 
FORECAST ERROR VARIANCE!

A 

D C 

B 

Pena & Toth 
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CORRELATION BETWEEN ANALYSIS & FORECAST ERRORS!

A 

D 

C 

B 

Pena & Toth 
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JUMPINESS & ENSEMBLE FORECASTS!
•  Jumpiness is a virtue of single (control) NWP forecasts!

–  Is it true for ensembles?!

•  Ensembles designed to capture forecast uncertainty!
–  Successive ensembles must convey reduced uncertainty!

•  Shorter range ensemble cloud must statistically lay within longer range cloud!

•  How to measure if an ensemble performs as it should?!

•  Method related to how we assess statistical consistency between 
ensemble and verifying analysis!
–  Analysis Rank (or Talagrand) Histogram!

•  Measure temporal consistency in successive ensembles!
–  Time consistency histogram!

•  Toth, Z., O. Talagrand, G. Candille, and Y. Zhu, 2002: Probability and ensemble 
forecasts (final draft). In: Environmental Forecast Verification: A practitioner's 
guide in atmospheric science. Ed.: I. T. Jolliffe and D. B. Stephenson. Wiley, pp.
137-164.!

•  Role of analysis taken by members in succeeding ensemble!



9 

ANALYSIS RANK HISTOGRAM   (TALAGRAND DIAGRAM)!
MEASURE OF RELIABILITY!



EXAMPLE FOR 3 ENSEMBLES!
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•  Canadian!
•  Ensemble filter!

•  Low time consistency  between 
successive perturbations !

•  Noise added to observations!
•  ECMWF!

•  Singular vectors!
•  Too low spread at short lead time!
•  No time consistency between 

successive perturbations!

•  NCEP!
•  Ensemble Transform!

•  Strong time conistency!
•  No noise added!

•  No model related perturbations !

Zhu et al 
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OUTLINE / SUMMARY 
•  Sources of forecast errors 

–  Initial condition – Observing system, DA  
–  Model / ensemble formation 

•   How to assess forecast errors? 
–  Error statistics from single forecasts – Statistical approach 
–  Ensembles – Dynamical approach 
–  Statistically post-processed ensembles – Dynamical-statistical approach 

•  Statistical post-processing of ensembles 
–  Bias correction, merging, downscaling, derivation of variables 

•  Ensemble database 
–  Summary statistics – Phase-1 
–  Full ensemble data – Phase-2 
–  All queries about weather can be answered 

•  Examples 
–  Ensemble over West Coast of US (SF) 
–  Display / decision tools 



NUMERICAL WEATHER PREDICTION (NWP) BASICS 

COMPONENTS OF NWP 
•  Create initial condition reflecting state of the atmosphere, land, ocean 
•  Create numerical model of atmosphere, land, ocean 

ANALYSIS OF ERRORS 
•  Errors present in both initial conditions and numerical models 
•  Coupled atmosphere / land / ocean dynamical system is chaotic 

–  Any error amplifies exponentially until nonlinearly saturated 
–  Error behavior is complex & depends on 

•  Nature of instabilities 
•  Nonlinear saturation 

IMPACT ON USERS 
•  Analysis / forecast errors negatively impact users 

–  Impact is user specific (user cost / loss situation) 
•  Information on expected forecast errors needed for rational decision making 

–  Spatial/temporal/cross-variable error covariance needed for many real life applications 
–  How can we provide information on expected forecast errors? 



WHAT INFORMATION USERS NEED 
•  General characteristics of forecast users  

–  Each user affected in specific way by 
•  Various weather elements at  
•  Different points in time &  
•  Space 

•  Requirements for optimal decision making for weather sensitive operation 
–  Probability distributions for single variables 

•  Lack of  information on cross-correlations 
–  Covariances needed across 

•  Forecast variables, space, and time 

•  Format of weather forecasts 
–  Joint probability distributions 

•  Provision of all joint distributions possibly needed by users is intractable 
–  Encapsulate best forecast info into calibrated ensemble members 

•  Possible weather scenarios  
–  6-Dimensional Data-Cube (6DDC) 

»  3 dimensions for space, 1 each for time, variable, and ensemble members 

•  Provision of weather information 
–  Ensemble members for sophisticated users 

•  Other types of format derived from ensemble data 
–  All forecast information fully consistent with calibrated ensemble data 



HOW CAN WE REDUCE & ESTIMATE  
EXPECTED FORECAST ERRORS? 

STATISTICAL APPROACH 
•  Statistically assess errors in past unperturbed forecasts (eg, GFS, RUC) 

–  Can correct for systematic errors in expected value 
–  Can create probabilistic forecast information – Eg, MOS PoP 

•  Limitation 
–  Case dependent variations in skill not captured 
–  Error covariance information practically not attainable 

DYNAMICAL APPROACH – Ensemble forecasting 
•  Sample initial & model error space - Monte Carlo approach 

–  Leverage DTC Ensemble Testbed (DET) efforts 
•  Prepare multiple analyses / forecasts –  

–  Case dependent error estimates 
–  Error covariance estimates 

•  Limitation 
–  Ensemble formation imperfect – not all initial / model errors represented 

DYNAMICAL-STATISTICAL APPROACH 
•  Statistically post-process ensemble forecasts 

–  Good of both worlds 
–  How can we do that? 



AVIATION EXAMPLE 
•  Recovery of a carrier from weather related disruptions 

–  Operational decisions depend on multitude of factors 
•  Based on United / Hemispheres March 2009 article, p. 11-12 

•  Factors affecting operations 
–  Weather – multiple parameters 

•  Over large region / CONUS during coming few days 
–  Federal regulations / aircraft limitations 

•  Dispatchers / load planners 
–  Aircraft availability 

•  Scheduling / flight planning 
–  Maintenance 

•  Pre-location of spare parts & other assets where needed 
–  Reservations 

•  Rebooking of passengers 
–  Customer service 

•  Compensation of severely affected customers 

•  How to design economically most viable operations? 
–  Given goals / requirements / metrics / constraints 



SELECTION OF OPTIMAL USER PROCEDURES 
•  Generate ensemble weather scenarios ei, i = 1, n 
•  Assume weather is ei, define optimal operation procedures oi 
•  Assess cost/loss cij using oi over all weather scenarios ej 
•  Select oi with minimum expected (mean) cost/loss ci over e1,…

en as optimum operation 
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USER REQUIREMENTS FOR QUALITY 

•  Statistical resolution (“predictive skill”) 
– Seek highest possible skill in ensemble of forecasts 
– Need to extract and fuse all predictive information 

•  Ensembles, high resolution unperturbed forecasts, 
observations, etc 

•  Statistical reliability 
– Need to make ensemble members statistically 

indistinguishable from reality 
•  Correct systematic errors (first moment correction) 
•  Assess error statistics (higher moment corrections) 
•  Use climatology as background information 



FORECAST QUALITY - REALITY 

Useful forecast info to ~20 days w. 20-80 km res. NWP models 
•  Imperfect models used 

–  Model specific drift (lead-time dependent systematic error) 
•  Need unconditional bias correction of each member on model grid 

–  Solution, eg: Bayesian Pre-Processor (BPP) 

•  Imperfect ensemble formation 
–  Forecasts are correlated, have various levels of skill, and form 

uncalibrated cfd (spread) 
•  Need to optimally fuse all predictive info into calibrated posterior cdf 

–  Solution, eg: Bayesian Processor of Ensembles (BPE) 

•  Stat. post-processing works on distribution of variables 
–  Raw ensemble members inconsistent with posterior cdf 

•  Need to adjust ensemble members to be consistent with posterior cdf 
–  Solution, eg: Members “mapped” into posterior quantiles 

•  NWP models don’t resolve variables of interest to user 
–  Information missing on fine time/spatial scales, further vars. 

•  Need to relate NWP forecast info to user variables 
–  Solution, eg: Bayesian downscaling to fine resolution grid 



STATISTICAL POST-PROCESSING!
•  Problem!

–  Relate coarse resolution biased forecast to user relevant fine resolution 
information!

•  Tasks broken up to facilitate collaboration / transition to operations!
–  Bias correct coarse resolution ensemble grid wrt NWP analysis!

•  Cheap!
•  Sample of forecasts / hind-casts needed!

–  Merge various guidance!
•  Fuse all predictive info into “unified ensemble”!

–  Create observationally based fine resolution analysis!
•  Estimate of truth!

–  Downscale bias-corrected ensemble forecast!
•  Relate coarse resolution NWP and fine resolution observationally based analyses!

–  Perfect prog approach - No need for hind-casts!
–  Derive additional variables – AIVs!

•  Based on bias corrected & downscaled ensemble!
•  Outcome!

–  Skillful and statistically reliable ensemble of AIV variables on fine grid!



00hr GEFS Ensemble Mean & Bias Before/After Downscaling 10%   
  2m Temperature !   10m U Wind !

Before 

After 

Before 

After 
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From  Bias correction (NCEP, CMC) 
 Dual-resolution (NCEP only) 
 Down-scaling (NCEP, CMC) 
 Combination of NCEP and CMC 

NAEFS final products 

NCEP/GEFS raw forecast 

8+ days gain 

CONTINUOUS RANKED PROBABILITY SCORE  
RAW / BIAS CORR. & DOWNSCALED & HIRES MERGED / NAEFS 

High 
resolution 
control & 
Canadian 
ensemble 

adds 
significant 

value!
=>!

8-day total 
gain in skill!



•  Depository / access!
–  Create unified NOAA digital ensemble forecast database!

•  Summary statistics from ensemble!
–  E.g., 10/50/90 percentile forecasts - Pase 1!

•  All ensemble members!
–  E.g., 20-100 members - Phase 2!

–  Provide easy access to internal / external users!
•  Seamless forecasts across lead time ranges!
•  Many applications beyond NEXTGEN!

–  Part of 4D-Cube!
•  Relationship with SAS?!

•  Interrogation / forecaster tools!
–  Modify summary statistics!
–  Back-propagate modified information into ensemble!
–  Derive any information from summary statistics / ensembles!

•  All queries about weather can be answered!
–  Joint probabilities, spatial/temporal aggregate variables, etc!

ENSEMBLE DATABASE!
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BACKGROUND 
•  Objective 

•  Develop fine scale ensemble forecast system 

•  Application areas 
•  Aviation (SF airport) 
•  Winter precipitation (CA & OR coasts) 
•  Summer fire weather (CA) 

•  Potential user groups 
•  Aviation industry, transportation, emergency and 

ecosystem management, etc 



EXPERIMENTAL	
  DESIGN	
  2009-­‐2010	
  

Nested	
  domain:	
  	
  
• 	
  Outer/inner	
  nest	
  grid	
  spacing	
  9	
  and	
  3	
  km,	
  respec5vely.	
  
• 	
  6-­‐h	
  cycles,	
  120hr	
  forecasts	
  foe	
  the	
  outer	
  nest	
  and	
  12hr	
  forecasts	
  for	
  the	
  inner	
  nest	
  	
  
• 	
  9	
  members	
  (listed	
  in	
  the	
  following	
  slide)	
  
• 	
  Mixed	
  models,	
  physics	
  &	
  perturbed	
  boundary	
  condi5ons	
  from	
  NCEP	
  Global	
  Ensemble	
  

• 	
  2010-­‐2011	
  season	
  everything	
  stays	
  the	
  same	
  except	
  ini5al	
  condi5on	
  perturba5ons?	
  



QPF 
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Example of 24-h QPF 
9-km resolution  

9 members: 
ARW-TOM-GEP0 
ARW-FER-GEP1 
ARW-SCH-GEP2 
ARW-TOM-GEP3 
NMM-FER-GEP4 
ARW-FER-GEP5 
ARW-SCH-GEP6 
ARW-TOM-GEP7 
NMM-FER-GEP8 



HMT QPF and PQPF 
24-­‐hr	
  PQPF	
  	
  

0.1	
  in.	
  

1	
  in.	
  

2	
  in.	
  

48-­‐hr	
  forecast	
  star5ng	
  	
  at	
  12	
  UTC,	
  18	
  January	
  2010	
  	
  



Reliability of 24-h PQPF 

30 30 http://esrl.noaa.gov/gsd/fab 
OAR/ESRL/GSD/Forecast Applications Branch 

Reliability diagrams of 24-h 
PQPF  
9-km resolution  
Dec 2009 - Apr 2010 

Observed frequency vs 
forecast probability 
Overforecast of PQPF 
Similar performance for 
different lead times 

Brier skill score (BSS): 
Reference brier score is 
Stage IV sample climatology 
BSS is only skilful for 24-h 
lead time at all thresholds 
and for 0.01 inch/24-h 
beyond 24-h lead time. 



West-­‐East	
  XCs	
  of	
  	
  Cloud	
  Liquid	
  through	
  the	
  San	
  Francisco	
  Area	
  for	
  
Model	
  runs	
  ini5alized	
  on	
  28	
  Sept.	
  2010	
  at	
  18UTC	
  

Forecasts	
  from	
  different	
  ensemble	
  members	
  03h	
  

06h	
  

05h	
  

04h	
  



	
  	
  	
  	
  	
  	
  Cloud	
  /	
  Reflec5vity	
  /	
  Precip	
  Type	
  (1km	
  analysis)	
  

DIA	
  

Obstruc5ons	
  to	
  visibility	
  along	
  approach	
  paths	
  



Analysis	
  of	
  Visibility	
  for	
  the	
  period	
  18	
  UTC	
  28	
  Sept.	
  2010	
  to	
  	
  
00UTC	
  29	
  Sept.	
  2010	
  



    GSD Initiative  

 Exploratory web-based decision support tool 

 Decision guidance based on individual requirements for a given activity, in 
weather sensitive situations 

 Risk assessment interface, including economic (cost-loss) module  

 Risk tolerance affects Yes/No decision guidance by associating (calibrated) 
forecast uncertainty and risk limits 

 Results created on demand 

Personal Weather Advisor (concept idea)!

Decision Support in Weather-Sensitive Situations 
Paula McCaslin and Kirk Holub, NOAA Earth Systems Research Laboratory 









OUTLINE / SUMMARY!
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–  Initial condition – Observing system, DA !
–  Model / ensemble formation!

•   How to assess forecast errors?!
–  Error statistics from single forecasts – Statistical approach!
–  Ensembles – Dynamical approach!
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BACKGROUND 



24-h GMOS 
Forecast 

For CONUS: 
NAEFS(1.45) : GMOS(1.72) 

19% impr. over GMOS 

MDL GMOS  & NAEFS Downscaled Forecast   
Mean Absolute Error w.r.t. RTMA  Average For Sept. 2007     

24-h NAEFS 
Forecast 

Valery Dagostaro, Kathy Gilbert, 
Bo Cui, Yuejian Zhu 





ETS of 6-h QPF 

42 
42 http://esrl.noaa.gov/gsd/fab 

OAR/ESRL/GSD/Forecast Applications Branch 

Equitable threat score (ETS) 
of 6-h QPF  
9-km resolution  
Dec 2009 - Apr 2010 (some 
missing data) 
Verification data: Stage IV 

6-h QPF verified 4 times per 
day (00, 06, 12, 18 UTC) 
6-114 h lead times 

Ensemble mean is much 
better than individual 
members. 
Gep0 (control) is also better. 
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Cloud Coverage 
July 30 2010 00UTC 

00hr 

03hr 

06hr 

LAPS CYC NOCYC 



Initial Perturbations for HMT-10/11 
“Cycling” GEFS (or SREF) 

perturbations 
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00Z 	
   06Z 	
  

Global Model Analysis  
interpolated on LAM grid 

LAM forecast driven 
by  
global analysis 

Forecast	
  Time	
  12Z 	
  

Perturbations 



Optimizing the HCPF algorithm 
Instantaneous reflectivity suffers from phase errors 
Collecting the hourly maximum increases coverage, providing an  
excellent predictor 

1-­‐km	
  reflec5vity	
  
Hourly	
  max	
  1-­‐km	
  
reflec5vity	
  



Optimizing the HCPF algorithm 

Hourly max 
1km reflectivity 

Hourly max 
updraft velocity 

HRRR updraft velocity and reflectivity are strongly correlated, 
but the updraft field can more easily distinguish between 
convective and heavy stratiform precipitation 



Optimizing the HCPF algorithm 
Early versions of the HCPF had inconsistent skill, with  
large bias swings throughout the diurnal convective cycle 

•  Perform bias correction via a  
 diurnally varying updraft (w)  
 threshold 

•  Find threshold values at each  
 hour that achieve a fixed bias 

•  Perform a Fourier synthesis to  
 generate a smooth, analytic  
 function for updraft  
 velocity 

Diurnal convective minimum 

Convective initiation 

Diurnal 
convective 
maximum 



Verifica5on	
  period:	
  August	
  2009,	
  Comprising	
  540	
  ensemble	
  forecasts	
  

HCPF probability verification 

40%	
  probability	
  verified	
  on	
  a	
  4-­‐km	
  grid	
  

Highest overall skill (and largest gap between one and multiple members) occurs 
around 06 UTC when convection evolves upscale. 
Double minima in skill: early morning hours, and midday convective initiation. 



With more members, similar or slightly higher skill can be obtained, while 
substantially reducing bias.  

HCPF probability verification 

40%	
  probability	
  verified	
  on	
  a	
  4-­‐km	
  grid	
  



Summary 
•  HRRR can provide an estimate of the likelihood (probability), timing, and 
location of convection through a time-lagged “ensemble-of-opportunity” 

•  HRRR convective probabilistic forecast (HCPF) shown to have comparable skill to 
other convective forecasts including the RUC convective probabilistic forecast 
(RCPF) and the Collaborative Convective Forecast Product (CCFP) 

•  Key challenge is under-forecasting moist convection (low bias/PoD) in weakly 
forced regions of convection (summer season) in early afternoon 

•  Improvements to HCPF under-forecast problem can be made through a variety 
of techniques including “time-smeared” forecasts, larger search radii, lower 
detection thresholds and limiting the ensemble to the more recent members 



Where to go from here 

•  Incorporate deterministic forecast from recent member(s) to convey convective 
mode and complement probabilities to indicate likelihood 

•  Perform logistic regression to make probabilities statistically reliable while 
preserving sharpness/resolution to the forecasts 

•  Apply time-lagged ensemble to short-fuse forecast probabilities of other events 
such as high wind, hail, tornadoes, flash flooding, heavy ice/snow, fires 

•  Add additional ensemble members with different physics, initialized at same 
time, to improve HCPF which leads to… 

•  HRRR ensemble a.k.a. HRRRE in co-development between ESRL and National 
Centers for Environmental Prediction (NCEP) over the next 5 years 


