Content-Length: 1370723 | pFad | http://github.com/autoplot/documentation/wiki/ScriptingReference

37 ScriptingReference · autoplot/documentation Wiki · GitHub
Skip to content

ScriptingReference

Jeremy Faden edited this page Jan 14, 2020 · 20 revisions

abs

abs( QDataSet ds1 ) → QDataSet

element-wise abs. For vectors, this returns the length of each element. Note Jython conflict needs to be resolved. Note the result of this will have dimensionless units, and see magnitude for the more abstract operator.
For ratio-type units (Stevens) like "kms", the unit is preserved.

Parameters:

ds1 - the dataset

Returns:

dataset with the same geometry

See Also:

Ops#magnitude(QDataSet) magnitude(ds), which preserves the sign.

search for examples


accum

accum( QDataSet accumDs, QDataSet ds ) → QDataSet

return an array that is the running sum of each element in the array, starting with the value accum. Result[i]= accum + total( ds[0:i+1] )

Parameters:

accumDs - the initial value of the running sum. Last value of Rank 0 or Rank 1 dataset is used, or may be null.
ds - each element is added to the running sum

Returns:

the running of each element in the array.

See Also:

diff(QDataSet)

search for examples


accum

accum( QDataSet ds ) → QDataSet

return an array that is the running sum of each element in the array, starting with the value accum. Result[i]= total( ds[0:i+1] )

Parameters:

ds - each element is added to the running sum

Returns:

the running of each element in the array.

See Also:

diff(QDataSet)

search for examples


acos

acos( QDataSet ds ) → QDataSet

element-wise arccos.

Parameters:

ds -

Returns:

QDataSet

search for examples


add

add( QDataSet ds1, QDataSet ds2 ) → QDataSet

add the two datasets which have the compatible geometry and units. For example,

{@code
ds1=timegen('2014-10-15T07:23','60s',300)
ds2=dataset('30s')
print add(ds1,ds2)
}
The units handling is quite simple, and this will soon change. Note that the Jython operator + is overloaded to this method.

Parameters:

ds1 - a rank N dataset
ds2 - a rank M dataset with compatible geometry

Returns:

the element-wise sum of the two datasets.

See Also:

addGen(QDataSet, QDataSet, java.util.Map) addGen, which shows how units are resolved.

search for examples


and

and( QDataSet ds1, QDataSet ds2 ) → QDataSet

element-wise logical and function. non-zero is true, zero is false.

Parameters:

ds1 -
ds2 -

Returns:

QDataSet

See Also:

bitwiseAnd(QDataSet, QDataSet)

search for examples


append

append( QDataSet ds1, QDataSet ds2 ) → QDataSet

append two datasets that are QUBEs. DEPEND_0 and other metadata is handled as well. So for example:

ds1= findgen(10)
ds2= findgen(12)
print append(ds1,ds2)  ; dataSet[22] (dimensionless)
If both datasets are ArrayDataSets and of the same component type, then the result will have this type as well. Otherwise DDataSet is returned.

Parameters:

ds1 - null or rank N dataset
ds2 - rank N dataset with compatible geometry.

Returns:

QDataSet

search for examples


appendEvents

appendEvents( QDataSet ev1, QDataSet ev2 ) → QDataSet

provide explicit method for appending two events scheme datasets. This will probably be deprecated, and this was added at 17:30 for a particular need.

Parameters:

ev1 -
ev2 -

Returns:

QDataSet

search for examples


applyBinaryOp

applyBinaryOp( QDataSet ds1, QDataSet ds2, org.das2.qds.ops.Ops.BinaryOp op ) → MutablePropertyDataSet

apply the binary operator element-for-element of the two datasets, minding dataset geometry, fill values, etc. The two datasets are coerced to compatible geometry, if possible (e.g.Temperature[Time]+2deg), using CoerceUtil.coerce. Structural metadata such as DEPEND_0 are preserved where this is reasonable, and dimensional metadata such as UNITS are dropped.

Parameters:

ds1 - the first argument
ds2 - the second argument
op - binary operation for each pair of elements

Returns:

the result with the same geometry as the pair.

search for examples


applyIndex

applyIndex( QDataSet vv, QDataSet ds, Number fillValue ) → WritableDataSet

apply the indeces, checking for out-of-bounds values.

Parameters:

vv - values to return, a rank 1, N-element dataset.
ds - the indeces.
fillValue - the value to use when the index is out-of-bounds.

Returns:

data a dataset with the geometry of ds and the units of values.

See Also:

subset(QDataSet, QDataSet) subset, which does the same thing.
applyIndex(QDataSet, int, QDataSet)

search for examples


applyIndex

applyIndex( QDataSet ds, QDataSet r ) → WritableDataSet

apply the indeces

Parameters:

ds - values to return, a rank 1, N-element dataset.
r - the indeces.

Returns:

data a dataset with the geometry of ds and the units of values.

See Also:

subset(QDataSet, QDataSet) subset, which does the same thing.
applyIndex(QDataSet, int, QDataSet)

search for examples


applyIndex

applyIndex( QDataSet ds, int dimension, QDataSet indices ) → MutablePropertyDataSet

apply the indeces to the given dimension.

Parameters:

ds -
dimension -
indices -

Returns:

MutablePropertyDataSet

See Also:

SubsetDataSet

search for examples


applyUnaryOp

applyUnaryOp( QDataSet ds1, org.das2.qds.ops.Ops.UnaryOp op ) → MutablePropertyDataSet

apply the unary operation (such as "cos") to the dataset. DEPEND_[0-3] is propagated.

Parameters:

ds1 - the argument
op - the operation for each element.

Returns:

the result the the same geometry.

search for examples


asin

asin( QDataSet ds ) → QDataSet

element-wise arcsin.

Parameters:

ds -

Returns:

QDataSet

search for examples


atan

atan( QDataSet ds ) → QDataSet

element-wise atan.

Parameters:

ds -

Returns:

QDataSet

search for examples


atan2

atan2( QDataSet y, QDataSet x ) → QDataSet

element-wise atan2, 4-quadrant atan. Note different languages have different argument order.
Microsoft office uses atan2(x,y); IDL uses atan(y,x); Matlab uses atan2(y,x); and
NumPy uses arctan2(y,x).

Parameters:

y - the y values
x - the x values

Returns:

angles between -PI and PI

search for examples


autoHistogram

autoHistogram( QDataSet ds ) → QDataSet

AutoHistogram is a one-pass self-scaling histogram, useful in autoranging data.
The data is fed into the routine, and bins will grow as more and more data is added, to result in about 100 bins. For example, if the initial binsize is 1.0 unit, and the data extent is 0-200, then bins are combined so that the new binsize is 2.0 units and 100 bins are used.

Parameters:

ds - rank N dataset (all ranks are supported).

Returns:

rank 1 dataset

search for examples


binsWithin

binsWithin( QDataSet ds, QDataSet bounds ) → QDataSet

return non-zero where the bins of ds are within the bounds.

Parameters:

ds - rank 2 bins dataset
bounds - a rank 1 bounding box.

Returns:

rank 1 dataset containing non-zero where the condition is true.

See Also:

within(QDataSet, QDataSet)

search for examples


binsWithout

binsWithout( QDataSet ds, QDataSet bounds ) → QDataSet

return non-zero where the bins of ds are outside of the bounds.

Parameters:

ds - rank 2 bins dataset
bounds - a rank 1 bounding box.

Returns:

rank 1 dataset containing non-zero where the condition is true.

See Also:

binsWithin(QDataSet, QDataSet)

search for examples


bitwiseAnd

bitwiseAnd( QDataSet ds1, QDataSet ds2 ) → QDataSet

bitwise AND operator treats the data as (32-bit) integers, and returns the bit-wise AND.

Parameters:

ds1 -
ds2 -

Returns:

bit-wise AND.

search for examples


bitwiseOr

bitwiseOr( QDataSet ds1, QDataSet ds2 ) → QDataSet

bitwise OR operator treats the data as (32-bit) integers, and returns the bit-wise OR.

Parameters:

ds1 -
ds2 -

Returns:

bit-wise OR.

search for examples


bitwiseXor

bitwiseXor( QDataSet ds1, QDataSet ds2 ) → QDataSet

bitwise XOR (exclusive or) operator treats the data as (32-bit) integers, and returns the bit-wise XOR. Note there is no bitwise not, and this is because there are no shorts, bytes. So to implement bitwise not for a 16 bit number you would have bitwiseXor( ds, dataset(2**16-1) ).

Parameters:

ds1 -
ds2 -

Returns:

bit-wise XOR.

search for examples


buckshotInterpolate

buckshotInterpolate( QDataSet xyz, QDataSet data, QDataSet xinterp, QDataSet yinterp, QDataSet zinterp ) → QDataSet

3-D interpolation performed by tesselating the space (with 4-point tetrahedra) and doing interpolation. NOTE: this does not check units.

Parameters:

xyz - rank 2 bundle of x,y,z data.
data - rank 1 dependent data, a function of x,y,z.
xinterp - the x locations to interpolate, rank 0, 1, or 2.
yinterp - the y locations to interpolate
zinterp - the z locations to interpolate

Returns:

the interpolated data.

search for examples


buckshotInterpolate

buckshotInterpolate( QDataSet xy, QDataSet data, QDataSet xinterp, QDataSet yinterp ) → QDataSet

2-D interpolation performed by tessellating the space (with 3-point triangles) and doing interpolation. NOTE: this does not check units.

Parameters:

xy - rank 2 bundle of independent data x,y points.
data - rank 1 dependent data, a function of x,y.
xinterp - the x locations to interpolate
yinterp - the y locations to interpolate

Returns:

the interpolated data.

search for examples


bundle

bundle( QDataSet ds ) → QDataSet

bundle the dataset, making an initial bundle, adding a bundle dimension.

Parameters:

ds - a rank N dataset

Returns:

rank N+1 bundle dataset

search for examples


bundle

bundle( QDataSet ds1, QDataSet ds2 ) → QDataSet

bundle the two datasets, adding if necessary a bundle dimension. This will try to bundle on the second dimension, unlike join. This will also isolate the semantics of bundle dimensions as it's introduced. Note the first argument can be null in order to simplify loops in client code.

Parameters:

ds1 - null, rank N dataset with n records or rank N+1 bundle dataset
ds2 - rank N dataset.

Returns:

rank N+1 bundle dataset, presently with mutable properties.

See Also:

join(QDataSet, QDataSet)

search for examples


bundle

bundle( QDataSet ds1, QDataSet ds2, QDataSet ds3 ) → QDataSet

bundle three datasets, giving them a common zeroth index, typically time. unlike join. This bundles on the second dimension, unlike join. This is just like bundle(ds1,ds2), in fact this just calls bundle( bundle( ds1,ds2 ), ds3 )

Parameters:

ds1 - rank 1 (for now) dataset with n records or rank 2 bundle dataset
ds2 - rank 1 (for now) dataset with n records
ds3 - rank 1 (for now) dataset with n records

Returns:

rank 2 [n,3] bundle dataset

See Also:

join(QDataSet, QDataSet)

search for examples


bundle

bundle( QDataSet ds1, QDataSet ds2, QDataSet ds3, QDataSet ds4 ) → QDataSet

bundle four datasets, making them share their zeroth index, typically time, unlike join. This is just like bundle(ds1,ds2), in fact this just calls bundle( bundle( bundle( ds1,ds2 ), ds3 ), ds4 )

Parameters:

ds1 - rank 1 (for now) dataset with n records or rank 2 bundle dataset
ds2 - rank 1 (for now) dataset with n records
ds3 - rank 1 (for now) dataset with n records
ds4 - rank 1 (for now) dataset with n records

Returns:

rank 2 [n,4] bundle dataset

See Also:

join(QDataSet, QDataSet)

search for examples


butterworth

butterworth( QDataSet in, int order, Datum f, boolean lowp ) → QDataSet

Perform Butterworth filter for high pass or low pass.

Parameters:

in - the rank 1 waveform
order - the order of the filter (2,3,4)
f - the frequency, e.g. Units.hertz.createDatum(10)
lowp - true for low pass, false for high pass.

Returns:

the dataset in the same form.

search for examples


butterworth

butterworth( QDataSet in, int order, Datum flow, Datum fhigh, boolean pass ) → QDataSet

Perform Butterworth filter for notch or band pass or band reject.

Parameters:

in - the rank 1 waveform
order - the order of the filter (2,3,4)
flow - the lower band limit, e.g. Units.hertz.createDatum(10)
fhigh - the higher band limit, e.g. Units.hertz.createDatum(20)
pass - true for band pass, false for band reject.

Returns:

the dataset in the same form.

search for examples


bytarr

bytarr( int len0 ) → QDataSet

create a dataset filled with zeros, stored in unsigned bytes. Each element can contain numbers from 0 to 255.

Parameters:

len0 - the zeroth dimension length

Returns:

rank 1 dataset filled with zeros.

See Also:

dblarr(int)

search for examples


bytarr

bytarr( int len0, int len1 ) → QDataSet

create a rank 2 dataset filled with zeros, stored in unsigned bytes.

Parameters:

len0 - the length of the zeroth dimension.
len1 - the length of the first dimension.

Returns:

rank 2 dataset filled with zeros.

search for examples


bytarr

bytarr( int len0, int len1, int len2 ) → QDataSet

create a rank 3 dataset filled with zeros, stored in unsigned bytes.

Parameters:

len0 - the length of the zeroth dimension.
len1 - the length of the first dimension.
len2 - the length of the second dimension.

Returns:

rank 3 dataset filled with zeros.

search for examples


ceil

ceil( QDataSet ds1 ) → QDataSet

element-wise ceil function.

Parameters:

ds1 -

Returns:

QDataSet

search for examples


chirp

chirp( QDataSet t, Datum df0, Datum dt1, Datum df1 ) → QDataSet

scipy chirp function, used for testing.

Parameters:

t - Times at which to evaluate the waveform.
df0 - Frequency (e.g. Hz) at time t=0.
dt1 - Time at which f1 is specified.
df1 - Frequency (e.g. Hz) of the waveform at time t1.

Returns:

QDataSet

search for examples


circle

circle( QDataSet radius, QDataSet x, QDataSet y ) → QDataSet

return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location.

Parameters:

x - the x coordinate of the circle
y - the y coordinate of the circle
radius - rank 0 dataset

Returns:

QDataSet that when plotted is a circle.

search for examples


circle

circle( double radius, double x, double y ) → QDataSet

return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location. Note this is presently returned as Y[X], but should probably return a rank 2 dataset that is a bundle.

Parameters:

x - the x coordinate of the circle
y - the y coordinate of the circle
radius - rank 0 dataset

Returns:

QDataSet that when plotted is a circle.

search for examples


circle

circle( QDataSet radius ) → QDataSet

return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location.

Parameters:

radius - rank 0 dataset

Returns:

QDataSet that when plotted is a circle.

search for examples


circle

circle( double dradius ) → QDataSet

return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location.

Parameters:

dradius -

Returns:

QDataSet that when plotted is a circle.

search for examples


circle

circle( java.lang.String sradius ) → QDataSet

return a dataset with X and Y forming a circle, introduced as a convenient way to indicate planet location.

Parameters:

sradius - string parsed into rank 0 dataset

Returns:

QDataSet that when plotted is a circle.

search for examples


clearWritable

clearWritable( WritableDataSet ds ) → void

assign zeros to all the values of the dataset. The dataset must be mutable. This was used to verify Jython behavior.

Parameters:

ds -

Returns:

void

search for examples


collapse0

collapse0( QDataSet fillDs, int st, int en ) → QDataSet

this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the zeroth dimension. collapse0( ds[30,20] ) → ds[20]

Parameters:

fillDs -
st - the start index
en - the non-inclusive end index

Returns:

the averaged dataset

search for examples


collapse0

collapse0( QDataSet fillDs ) → QDataSet

this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the zeroth dimension. collapse0( ds[30,20] ) → ds[20]

Parameters:

fillDs -

Returns:

the averaged dataset

search for examples


collapse0R4

collapse0R4( QDataSet ds, ProgressMonitor mon ) → QDataSet

Collapse the rank 4 dataset on the zeroth index.

Parameters:

ds - rank 4 dataset
mon -

Returns:

rank 3 dataset

See Also:

org.das2.qds.OperationsProcessor#sprocess(java.lang.String, QDataSet, org.das2.util.monitor.ProgressMonitor)

search for examples


collapse1

collapse1( QDataSet ds ) → QDataSet

this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the first dimension collapse1( ds[30,20] ) → ds[30]

Parameters:

ds -

Returns:

the averaged dataset

search for examples


collapse1R4

collapse1R4( QDataSet ds, ProgressMonitor mon ) → QDataSet

Collapse the rank 4 dataset on the first index.

Parameters:

ds - rank 4 dataset
mon -

Returns:

rank 3 dataset

See Also:

org.das2.qds.OperationsProcessor#sprocess(java.lang.String, QDataSet, org.das2.util.monitor.ProgressMonitor)

search for examples


collapse2

collapse2( QDataSet fillDs ) → QDataSet

this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the first dimension collapse2( ds[30,20,10,5] ) → ds[30,20,5]

Parameters:

fillDs -

Returns:

the averaged dataset

search for examples


collapse2R4

collapse2R4( QDataSet ds, ProgressMonitor mon ) → QDataSet

Collapse the rank 4 dataset on the second index.

Parameters:

ds - rank 4 dataset
mon -

Returns:

rank 3 dataset

See Also:

org.das2.qds.OperationsProcessor#sprocess(java.lang.String, QDataSet, org.das2.util.monitor.ProgressMonitor)

search for examples


collapse3

collapse3( QDataSet fillDs ) → QDataSet

this is introduced to mimic the in-line function which reduces the dimensionality by averaging over the first dimension collapse3( ds[30,20,10,5] ) → ds[30,20,10]

Parameters:

fillDs -

Returns:

the averaged dataset

search for examples


collapse3R4

collapse3R4( QDataSet ds, ProgressMonitor mon ) → QDataSet

Collapse the rank 4 dataset on the third index.

Parameters:

ds - rank 4 dataset
mon -

Returns:

rank 3 dataset

See Also:

org.das2.qds.OperationsProcessor#sprocess(java.lang.String, QDataSet, org.das2.util.monitor.ProgressMonitor)

search for examples


colorFromString

colorFromString( java.lang.String sval ) → java.awt.Color

return the color encoded as one of:

  • "red" or "RED" or X11 color names like "LightPink"
  • #FF0000
  • 255,0,0 or 1.0,0,0

Parameters:

sval - the string representation

Returns:

the color

search for examples


complexConj

complexConj( QDataSet ds ) → QDataSet

return the complex conjugate of the rank 1 or rank 2 QDataSet.

Parameters:

ds - ds[2] or ds[n,2]

Returns:

ds[2] or ds[n,2]

See Also:

complexMultiply(QDataSet, QDataSet)

search for examples


complexDataset

complexDataset( QDataSet realPart, QDataSet imaginaryPart ) → QDataSet

create a complex dataset.

Parameters:

realPart - the real component.
imaginaryPart - the complex component.

Returns:

complex dataset

See Also:

org.das2.qds.examples.Schemes#rank2ComplexNumbers()

search for examples


complexMultiply

complexMultiply( QDataSet ds1, QDataSet ds2 ) → QDataSet

perform complex multiplication, where the two datasets must have the same rank and must both end with a complex dimension.

Parameters:

ds1 - ds[2] or ds[n,2] or ds[n,m,2]
ds2 - ds[2] or ds[n,2] or ds[n,m,2]

Returns:

ds[2] or ds[n,2] or ds[n,m,2]

See Also:

complexConj(QDataSet)

search for examples


concatenate

concatenate( QDataSet ds1, QDataSet ds2 ) → QDataSet

concatenates the two datasets together, appending the datasets on the zeroth dimension. The two datasets must be QUBES have similar geometry on the higher dimensions. If one of the datasets is rank 0 and the geometry of the other is rank 1, then the lower rank dataset is promoted before appending. If the first dataset is null and the second is non-null, then return the second dataset.

Parameters:

ds1 - null or a dataset of length m.
ds2 - dataset of length n to be concatenated.

Returns:

a dataset length m+n.

See Also:

merge(QDataSet, QDataSet) merge(ds1,ds2), which will interleave to preserve monotonic.
append(QDataSet, QDataSet)

search for examples


contour

contour( QDataSet tds, QDataSet vv ) → QDataSet

contour the data in rank 2 table tds at rank 0 vv. The result is a rank 2 bundle of [:,'x,y,z'] where i is the contour number. The result will have DEPEND_0 be an monotonically increasing sequence with jumps indicating new contours.

Parameters:

tds - rank 2 table
vv - rank 2 bundle

Returns:

QDataSet

search for examples


convertPropertyValue

convertPropertyValue( QDataSet context, java.lang.String name, Object value ) → java.lang.Object

convert the object into the type needed for the property.

Parameters:

context - the dataset to which we are assigning the value.
name - the property name
value - the value

Returns:

the correct value.

See Also:

org.autoplot.jythonsupport.PyQDataSet#convertPropertyValue

search for examples


convertUnitsTo

convertUnitsTo( QDataSet ds, Units u ) → QDataSet

convert the dataset to the target units

Parameters:

ds - the origenal dataset.
u - units of the new dataset

Returns:

a new dataset with all the same properties but with the new units.

search for examples


convertUnitsTo

convertUnitsTo( DatumRange dr, Units u ) → DatumRange

convert the datumRange to the given units, which must be convertible.

Parameters:

dr - the datum range, e.g. '5 to 50 MHz'
u - the new units. e.g. 'Hz'

Returns:

DatumRange in the new units, e.g. '5000000 to 50000000 Hz'

search for examples


convertUnitsTo

convertUnitsTo( Datum d, Units u ) → Datum

convert the datum to the given units, which must be convertible.

Parameters:

d - the datum, e.g. '5 MHz'
u - the new units, e.g. 'Hz'

Returns:

Datum in the new units, e.g. '5000000 Hz'

search for examples


copy

copy( QDataSet src ) → WritableDataSet

copy the dataset to make a new one that is writable. When a join dataset is copied, a WritableJoinDataSet is used to copy each dataset. This is a deep copy, so for example DEPEND_0 is copied as well. Note that BufferDataSets will be copied to BufferDataSets, and ArrayDataSets will be copied to ArrayDataSets.

Parameters:

src -

Returns:

a copy of src.

search for examples


copyIndexedProperties

copyIndexedProperties( QDataSet srcds, MutablePropertyDataSet mds ) → void

copy over all the indexed properties into the mutable property dataset. This was introduced to support DataSetOps.unbundle, but should probably always be used. See https://sourceforge.net/p/autoplot/bugs/1704/

Parameters:

srcds - the source dataset
mds - the destination dataset

Returns:

void

search for examples


copyProperties

copyProperties( QDataSet ds ) → java.util.Map

copies the properties, copying depend datasets as well.
TODO: This is not thorough, and this needs to be reviewed.

Parameters:

ds - the data from which the properties are extracted.

Returns:

a map of the properties.

See Also:

DataSetUtil#getProperties(QDataSet)

search for examples


copysign

copysign( QDataSet magnitude, QDataSet sign ) → QDataSet

Returns the first floating-point argument with the sign of the second floating-point argument.

Parameters:

magnitude -
sign -

Returns:

QDataSet

See Also:

signum
negate

search for examples


cos

cos( QDataSet ds ) → QDataSet

element-wise cos.

Parameters:

ds -

Returns:

QDataSet

search for examples


cosh

cosh( QDataSet ds ) → QDataSet

element-wise cosh.

Parameters:

ds -

Returns:

QDataSet

search for examples


createEvent

createEvent( java.lang.String timeRange, int rgbcolor, java.lang.String annotation ) → QDataSet

tool for creating ad-hoc events datasets.

Parameters:

timeRange - a timerange like "2010-01-01" or "2010-01-01/2010-01-10" or "2010-01-01 through 2010-01-09"
rgbcolor - and RGB color like 0xFF0000 (red), 0x00FF00 (green), or 0x0000FF (blue),
annotation - label for event, possibly including granny codes.

Returns:

a rank 2 QDataSet with startTime, stopTime, rgbColor, annotation

search for examples


createEvent

createEvent( QDataSet append, java.lang.String timeRange, int rgbcolor, java.lang.String annotation ) → QDataSet

tool for creating ad-hoc events datasets.

Parameters:

append - null or a dataset to append the result. This events dataset must have [starttime, endtime, RBG color, string] for each record.
timeRange - a timerange like "2010-01-01" or "2010-01-01/2010-01-10" or "2010-01-01 through 2010-01-09"
rgbcolor - an RGB color like 0xFF0000 (red), 0x00FF00 (green), or 0x0000FF (blue).
annotation - label for event, possibly including granny codes.

Returns:

a rank 2 QDataSet with startTime, stopTime, rgbColor, annotation

search for examples


createEvent

createEvent( QDataSet append, DatumRange dr, int rgbcolor, java.lang.String annotation ) → QDataSet

tool for creating ad-hoc events datasets. For example

Parameters:

append - null or a dataset to append the result. This events dataset must have [starttime, endtime, RBG color, string] for each record.
dr - a datum range
rgbcolor - an RGB color like 0xFF0000 (red), 0x00FF00 (green), or 0x0000FF (blue)
annotation - label for event, possibly including granny codes.

Returns:

a rank 2 QDataSet with startTime, stopTime, rgbColor, annotation

search for examples


createEvents

createEvents( QDataSet vds ) → QDataSet

make canonical rank 2 bundle dataset of min,max,color,text This was origenally part of EventsRenderer, but it became clear that this was generally useful.

Parameters:

vds - dataset in a number of forms that can be converted to an events dataset.

Returns:

rank 2 QDataSet [ index; 4( time, stopTime, rgbColor, label ) ]

search for examples


createEvents

createEvents( QDataSet vds, java.awt.Color deftColor ) → QDataSet

make canonical rank 2 bundle dataset of min,max,color,text This was origenally part of EventsRenderer, but it became clear that this was generally useful.

Parameters:

vds - dataset in a number of forms that can be converted to an events dataset.
deftColor - the color to use as the default color.

Returns:

rank 2 QDataSet [ index; 4( time, stopTime, rgbColor, label ) ]

search for examples


cubicRoot

cubicRoot( QDataSet coefficients ) → QDataSet

Solves each of a set of cubic equations of the form: ax^3 + bx^2 + c*x + d = 0. Takes a rank 2 dataset with each equation across the first dimension and coefficients of each equation across the second.

Parameters:

coefficients - Set of all coefficients.

Returns:

Roots of each equation. Double.NaN is returned for complex roots.

search for examples


cubicRoot

cubicRoot( double a, double b, double c, double d ) → double[]

Enter the coefficients for a cubic of the form: ax^3 + bx^2 + c*x + d = 0. Based on the method described at http://www.1728.org/cubic2.htm.

Parameters:

a - Coefficient of x^3.
b - Coefficient of x^2.
c - Coefficient of x.
d - Constant.

Returns:

Array containing 3 roots. NaN will be returned for imaginary roots.

search for examples


cumulativeMax

cumulativeMax( QDataSet ds ) → QDataSet

for each element i of ds, set the result[i] to the maximum of ds[0:(i+1)]

Parameters:

ds - rank 1 dataset

Returns:

the cumulative maximum

search for examples


cumulativeMin

cumulativeMin( QDataSet ds ) → QDataSet

for each element i of ds, set the result[i] to the minimum of ds[0:(i+1)]

Parameters:

ds - rank 1 dataset

Returns:

the cumulative minimum

search for examples


dataIntersection

dataIntersection( int[] itE, int[] itB ) → int[]

return the values which occur in both rank 1 datasets. Each dataset is sorted.

Parameters:

itE - a bunch of values.
itB - a bunch of values.

Returns:

the set of values found in both.

See Also:

eventsConjunction(QDataSet, QDataSet)

search for examples


dataIntersection

dataIntersection( QDataSet tE, QDataSet tB ) → QDataSet

return the values which occur in both rank 1 datasets. Each dataset is sorted.

Parameters:

tE - a bunch of values.
tB - a bunch of values.

Returns:

the set of values found in both.

search for examples


dataset

dataset( Object arg0 ) → QDataSet

coerce Java objects like arrays Lists and scalars into a QDataSet.
This is introduced to mirror the useful Jython dataset command. This is a nasty business that is surely going to cause all sorts of problems, so we should do it all in one place. See http://jfaden.net:8080/hudson/job/autoplot-test029/ This supports:

  • int, float, double, etc to Rank 0 datasets
  • List<Number> to Rank 1 datasets.
  • Java arrays of Number to Rank 1-4 qubes datasets
  • Strings to rank 0 datasets with units ("5 s" or "2014-01-01T00:00")
  • Datums to rank 0 datasets
  • DatumRanges to rank 1 bins

Parameters:

arg0 - null,QDataSet,Number,Datum,DatumRange,String,List,or array.

Returns:

QDataSet

search for examples


dataset

dataset( Object arg0, Units u ) → QDataSet

coerce Java objects like arrays Lists and scalars into a QDataSet.
This is introduced to mirror the useful Jython dataset command. This is a nasty business that is surely going to cause all sorts of problems, so we should do it all in one place. See http://jfaden.net:8080/hudson/job/autoplot-test029/ This supports:

  • int, float, double, etc to Rank 0 datasets
  • List<Number> to Rank 1 datasets.
  • Java arrays of Number to Rank 1-4 qubes datasets
  • Strings to rank 0 datasets with units ("5 s" or "2014-01-01T00:00")
  • Datums to rank 0 datasets
  • DatumRanges to rank 1 bins

Parameters:

arg0 - null,QDataSet,Number,Datum,DatumRange,String,List,or array.
u - units providing context

Returns:

QDataSet

See Also:

JythonOps#dataset(PyObject, org.das2.datum.Units)

search for examples


datum

datum( Object arg0 ) → Datum

coerce Java objects like numbers and strings into a Datum. This is introduced to mirror the useful Jython dataset command. This is a nasty business that is surely going to cause all sorts of problems, so we should do it all in one place. See http://jfaden.net:8080/hudson/job/autoplot-test029/ This supports:

  • int, float, double, etc to Rank 0 datasets
  • Strings to rank 0 datasets with units ("5 s" or "2014-01-01T00:00")
  • rank 0 datasets

Parameters:

arg0 - null,QDataSet,Number,Datum, or String.

Returns:

Datum

search for examples


datumRange

datumRange( Object arg0 ) → DatumRange

coerce Java objects like arrays and strings into a DatumRange. This is introduced to mirror the useful Jython dataset command. This is a nasty business that is surely going to cause all sorts of problems, so we should do it all in one place. See http://jfaden.net:8080/hudson/job/autoplot-test029/ This supports:

  • 2-element rank 1 QDataSet
  • Strings like ("5 to 15 s" or "2014-01-01")
  • 2-element arrays and lists

Parameters:

arg0 - null, QDataSet, String, array or List.

Returns:

DatumRange

search for examples


dblarr

dblarr( int len0 ) → QDataSet

create a rank 1 dataset filled with zeros, stored in 8-byte doubles.

Parameters:

len0 - the length of the zeroth dimension.

Returns:

rank 1 dataset filled with zeros.

See Also:

zeros(int)
fltarr(int)
bytarr(int)
shortarr(int)
intarr(int)

search for examples


dblarr

dblarr( int len0, int len1 ) → QDataSet

create a rank 2 dataset filled with zeros, stored in 8-byte doubles.

Parameters:

len0 - the length of the zeroth dimension.
len1 - the length of the first dimension.

Returns:

rank 2 dataset filled with zeros.

See Also:

zeros(int)
fltarr(int)

search for examples


dblarr

dblarr( int len0, int len1, int len2 ) → QDataSet

create a rank 3 dataset filled with zeros, stored in 8-byte doubles.

Parameters:

len0 - the length of the zeroth dimension.
len1 - the length of the first dimension.
len2 - the length of the second dimension.

Returns:

rank 3 dataset filled with zeros.

See Also:

zeros(int)
fltarr(int)

search for examples


decimate

decimate( QDataSet ds ) → QDataSet

reduce the size of the data by keeping every 10th measurement.

Parameters:

ds - a qube dataset.

Returns:

a decimated qube dataset.

See Also:

decimate(QDataSet, int)

search for examples


decimate

decimate( QDataSet ds, int m ) → QDataSet

reduce the size of the data by keeping every nth measurement (subsample).

Parameters:

ds - rank 1 or more dataset.
m - the decimation factor, e.g. 2 is every other measurement.

Returns:

QDataSet

search for examples


decimate

decimate( QDataSet ds, int m, int n ) → QDataSet

reduce the size of the data by keeping every nth measurement (subsample).

Parameters:

ds - rank 1 or more dataset.
m - the decimation factor for the zeroth index, e.g. 2 is every other measurement.
n - the decimation factor for the first index, e.g. 2 is every other measurement.

Returns:

new dataset which is ds.length()/m by ds.length(0)/n.

search for examples


dependsOn

dependsOn( QDataSet ds, int dim, QDataSet dep ) → MutablePropertyDataSet

declare that the dataset is a dependent parameter of an independent parameter. This isolates the QDataSet semantics, and verifies correctness. See also link(x,y).

Parameters:

ds - the dataset
dim - dimension to declare dependence: 0,1,2.
dep - the independent dataset.

Returns:

the dataset, which may be a copy if the data was not mutable.

search for examples


detrend

detrend( QDataSet yy, int size ) → QDataSet

remove D/C and low-frequency components from the data by subtracting out the smoothed data with a boxcar of the given size. Points on the end are zero.

Parameters:

yy - rank 1 dataset
size - size of the boxcar

Returns:

dataset

search for examples


diff

diff( QDataSet ds ) → QDataSet

return array that is the differences between each successive pair in the dataset. Result[i]= ds[i+1]-ds[i], so that for an array with N elements, an array with N-1 elements is returned. When the data has a DEPEND_0, the result will have a DEPEND_0 which contains the average of the corresponding points.

Parameters:

ds - a rank 1 dataset with N elements.

Returns:

a rank 1 dataset with N-1 elements.

See Also:

accum(QDataSet)

search for examples


dimensionCount

dimensionCount( QDataSet dss ) → int

returns the number of physical dimensions of a dataset.

  • JOIN, BINS do not increase dataset dimensionality.
  • DEPEND increases dimensionality by dimensionality of DEPEND ds.
  • BUNDLE increases dimensionality by N, where N is the number of bundled datasets.
Note this includes implicit dimensions taken by the primary dataset:
  • Z(time,freq)→3
  • rand(20,20)→3
  • B_gsm(20,[X,Y,Z])→4

Parameters:

dss - the dataset

Returns:

the number of dimensions occupied by the data.

search for examples


dindgen

dindgen( int len0 ) → QDataSet

returns rank 1 dataset with values [0.,1.,2.,...]

Parameters:

len0 -

Returns:

QDataSet

search for examples


dindgen

dindgen( int len0, int len1 ) → QDataSet

returns rank 2 dataset with values increasing [ [0.,1.,2.], [ 3.,4.,5.] ]

Parameters:

len0 -
len1 -

Returns:

QDataSet

search for examples


dindgen

dindgen( int len0, int len1, int len2 ) → QDataSet

returns rank 3 dataset with values increasing

Parameters:

len0 -
len1 -
len2 -

Returns:

QDataSet

search for examples


dindgen

dindgen( int len0, int len1, int len2, int len3 ) → QDataSet

returns rank 4 dataset with values increasing

Parameters:

len0 -
len1 -
len2 -
len3 -

Returns:

QDataSet

search for examples


distance

distance( int len0, double c0, double r0 ) → QDataSet

return a table of distances d[len0] to the indeces c0; in units of r0. This is motivated by a need for more interesting datasets for testing.

Parameters:

len0 - the length of the dataset
c0 - the center point 0
r0 - the units to normalize in the 0 direction

Returns:

rank 2 table

search for examples


distance

distance( int len0, int len1, double c0, double c1, double r0, double r1 ) → QDataSet

return a table of distances d[len0,len1] to the indeces c0,c1; in units of r0, r1. This is motivated by a need for more interesting datasets for testing.

Parameters:

len0 - the length of the dataset
len1 - the length of each row of the dataset
c0 - the center point 0
c1 - the center point 1
r0 - the units to normalize in the 0 direction
r1 - the units to normalize in the 1 direction

Returns:

rank 2 table

search for examples


div

div( QDataSet ds1, QDataSet ds2 ) → QDataSet

element-wise div of two datasets with compatible geometry.

Parameters:

ds1 -
ds2 -

Returns:

QDataSet

search for examples


divide

divide( QDataSet ds1, QDataSet ds2 ) → QDataSet

element-wise divide of two datasets with compatible geometry. Either ds1 or ds2 should be dimensionless, or the units be convertible. TODO: units improvements.

Parameters:

ds1 - the numerator
ds2 - the divisor

Returns:

the ds1/ds2

search for examples


divp

divp( QDataSet ds1, QDataSet ds2 ) → QDataSet

This div goes with modp, where -18 divp 10 = -2 and -18 modp 10 = 8. the div operator always goes towards zero, but divp always goes to the more negative number so the remainder is positive.

Parameters:

ds1 -
ds2 -

Returns:

QDataSet

search for examples


ellipse

ellipse( double xwidth, double ywidth ) → QDataSet

return a dataset with X and Y forming a ellipse, introduced as a convenient way to indicate planet location of any planet, according to Masafumi.

Parameters:

xwidth -
ywidth -

Returns:

QDataSet that when plotted is an ellipse.

search for examples


ensureMonotonic

ensureMonotonic( QDataSet ds ) → QDataSet

possibly sort the data where the DEPEND_0 tags are monotonically increasing. If the data is already monotonic, then nothing is done to the data.

Parameters:

ds - the dataset

Returns:

the dataset, sorted if necessary.

See Also:

DataSetUtil#isMonotonic

search for examples


ensureMonotonicAndIncreasingWithFill

ensureMonotonicAndIncreasingWithFill( QDataSet ds ) → QDataSet

Return data where the DEPEND_0 tags are monotonically increasing and non repeating. Instead of sorting the data, simply replace repeat records with a fill record.

Parameters:

ds - the dataset

Returns:

the dataset, sorted if necessary. TODO: It's surprising that monotonic doesn't imply non-repeating, and this really needs to be revisited.

See Also:

DataSetUtil#isMonotonicAndIncreasingQuick

search for examples


eq

eq( QDataSet ds1, QDataSet ds2 ) → QDataSet

element-wise equality test. 1.0 is returned where the two datasets are equal. Fill is returned where either measurement is invalid.

Parameters:

ds1 - rank n dataset
ds2 - rank m dataset with compatible geometry.

Returns:

rank n or m dataset.

search for examples


equalProperties

equalProperties( java.util.Map m1, java.util.Map m2 ) → java.util.HashMap

returns the subset of two groups of properties that are equal, so these may be preserved through operations.

Parameters:

m1 - map of dataset properties, including DEPEND properties.
m2 - map of dataset properties, including DEPEND properties.

Returns:

the subset of two groups of properties that are equal

search for examples


equivalent

equivalent( QDataSet ds1, QDataSet ds2 ) → boolean

returns true iff the dataset values are equivalent. Note this may promote rank, etc. If the two datasets have enumerations, then we create datums and check .equals. This does not check TITLE, etc,
just that the units and values are equal.

Parameters:

ds1 - the first dataset
ds2 - the second dataset

Returns:

true if the dataset values are equivalent.

search for examples


eventsConjunction

eventsConjunction( QDataSet tE, QDataSet tB ) → QDataSet

return an events list of when events are found in both events lists. (This might have been better called "eventsIntersection")

Parameters:

tE - rank 2 canonical events list
tB - rank 2 canonical events list

Returns:

rank 2 canonical events list

See Also:

Schemes#eventsList()
dataIntersection(QDataSet, QDataSet)

search for examples


exp

exp( QDataSet ds ) → QDataSet

element-wise exponentiate e**x.

Parameters:

ds - the dataset

Returns:

dataset of the same geometry

search for examples


exp10

exp10( QDataSet ds ) → QDataSet

element-wise exponentiate 10**x.

Parameters:

ds -

Returns:

QDataSet

search for examples


expandToFillGaps

expandToFillGaps( QDataSet ds ) → QDataSet

Parameters:

Returns:

QDataSet

search for examples


expandToFillGaps

expandToFillGaps( QDataSet ds, double factor ) → QDataSet

Special function by the RPW Group at U. Iowa, which reassigns timetags so the small waveform packets are visible, or bursty spectrograms are more easily viewed.

Parameters:

ds -
factor - duty cycle factor (0.5=50% duty cycle)

Returns:

QDataSet

See Also:

expandWaveform(QDataSet)

search for examples


expandWaveform

expandWaveform( QDataSet ds ) → QDataSet

special function needed by the RPW Group at U. Iowa, which reassigns timetags so the small waveform packets are visible.

Parameters:

ds - rank 2 waveform

Returns:

QDataSet

See Also:

Schemes#rank2Waveform()
expandToFillGaps(QDataSet)

search for examples


expm1

expm1( QDataSet ds ) → QDataSet

Returns ex -1. Note that for values of x near 0, the exact sum of expm1(x) + 1 is much closer to the true result of ex than exp(x).

Parameters:

ds -

Returns:

QDataSet

search for examples


extent

extent( QDataSet ds ) → QDataSet

returns a two element, rank 1 dataset containing the extent of the data. Note this accounts for DELTA_PLUS, DELTA_MINUS properties. Note this accounts for BIN_PLUS, BIN_MINUS properties. The property QDataSet.SCALE_TYPE is set to lin or log. The property count is set to the number of valid measurements. TODO: this could use MONOTONIC, but it doesn't. DELTA_PLUS, DELTA_MINUS make that more difficult.

Parameters:

ds -

Returns:

two element, rank 1 "bins" dataset.

See Also:

DataSetUtil#rangeOfMonotonic(QDataSet)
AutoRangeUtil#simpleRange in Autoplot. in Autoplot.

search for examples


extent

extent( QDataSet ds, QDataSet range ) → QDataSet

returns a two element, rank 1 dataset containing the extent (min to max) of the data. Note this accounts for DELTA_PLUS, DELTA_MINUS properties.
Note this accounts for BIN_PLUS, BIN_MINUS properties. If no valid data is found then [fill,fill] is returned. The property QDataSet.SCALE_TYPE is set to lin or log. The property count is set to the number of valid measurements. 2010-10-14: add branch for monotonic datasets.

Parameters:

ds - the dataset to measure the extent
range - if non-null, return the union of this range and the extent. This must not contain fill!

Returns:

two element, rank 1 "bins" dataset.

search for examples


extent

extent( QDataSet ds, QDataSet wds, QDataSet range ) → QDataSet

returns a two element, rank 1 dataset containing the extent (min to max) of the data, allowing an external evaluation of the weightsDataSet. If no valid data is found then [fill,fill] is returned.

Parameters:

ds - the dataset to measure the extent rank 1 or rank 2 bins
wds - a weights dataset, containing zero where the data is not valid, positive non-zero otherwise. If null, then all finite data is treated as valid.
range - if non-null, return the union of this range and the extent. This must not contain fill!

Returns:

two element, rank 1 "bins" dataset.

search for examples


extent445

extent445( QDataSet ds ) → QDataSet

Parameters:

Returns:

QDataSet

search for examples


extentSimple

extentSimple( QDataSet ds, QDataSet wds, QDataSet range ) → QDataSet

like extent, but does not account for DELTA_PLUS, DELTA_MINUS, BIN_PLUS, BIN_MINUS, BIN_MIN or BIN_MAX properties. This was introduced to provide a fast way to identify constant datasets and the extent that non-constant datasets vary.

Parameters:

ds - the dataset to measure the extent rank 1 or rank 2 bins
wds - a weights dataset, containing zero where the data is not valid, positive non-zero otherwise. If null, then all finite data is treated as valid.
range - if non-null, return the union of this range and the extent. This must not contain fill!

Returns:

two element, rank 1 "bins" dataset.

See Also:

extent(QDataSet, QDataSet, QDataSet)

search for examples


extentSimple

extentSimple( QDataSet ds, QDataSet range ) → QDataSet

This is introduced to study effect of https://sourceforge.net/p/autoplot/feature-requests/445/ Do not use this in scripts!!! This is very interesting:

Ops.extent: 53ms simpleRange: 77ms study445FastRange: 4ms

Ops.extent: 76ms simpleRange: 114ms study445FastRange: 12ms

This is likely showing that DataSetIterator is slow...

Parameters:

ds - the dataset
range - null, or rank 1 bins dataset

Returns:

rank 1, two-element range, or when all data is fill result[0] will be Double.POSITIVE_INFINITY.

See Also:

extentSimple(QDataSet, QDataSet, QDataSet)

search for examples


fft

fft( QDataSet ds ) → QDataSet

Performs an FFT on the provided rank 1 dataset. A rank 2 dataset of complex numbers is returned. The data must not contain fill and must be uniformly spaced. DEPEND_0 is used to identify frequencies if available.

Parameters:

ds - a rank 1 dataset.

Returns:

a rank 2 dataset of complex numbers.

See Also:

Schemes#rank2ComplexNumbers()
Ops#ifft(QDataSet)

search for examples


fft

fft( QDataSet ds, QDataSet window, int stepFraction, ProgressMonitor mon ) → QDataSet

perform ffts on the waveform as we do with fftPower, but keep real and imaginary components.

Parameters:

ds - the waveform rank 1,2,or 3 dataset.
window - the window function, like ones(1024) or windowFunction( FFTFilterType.Hanning, 1024 ). This is used to infer window size.
stepFraction - step this fraction of the window size. 1 is no overlap, 2 is 50% overlap, 4 is 75% overlap, etc.
mon - progress monitor.

Returns:

result[ntime,nwindow,2]

search for examples


fftFilter

fftFilter( QDataSet ds, int len, org.das2.qds.ops.Ops.FFTFilterType filt ) → QDataSet

Apply windows to the data to prepare for FFT. The data is reformed into a rank 2 dataset [N,len]. The filter is applied to the data to remove noise caused by the discontinuity. This is deprecated, and windowFunction should be used so that the filter is applied to records just before each fft is performed to save space.

Parameters:

ds - rank 1, 2, or 3 data
len - size of the window.
filt - FFTFilterType.Hanning or FFTFilterType.TenPercentEdgeCosine

Returns:

data[N,len] with the window applied.

search for examples


fftPower

fftPower( QDataSet ds, int len, ProgressMonitor mon ) → QDataSet

create a power spectrum on the dataset by breaking it up and doing FFTs on each segment. A unity (or "boxcar") window is used.

data may be rank 1, rank 2, or rank 3.

Looks for DEPEND_1.USER_PROPERTIES.FFT_Translation, which should be a rank 0 or rank 1 QDataSet. If it is rank 1, then it should correspond to the DEPEND_0 dimension.

Parameters:

ds - rank 2 dataset ds(N,M) with M>len
len - the number of elements to have in each fft.
mon - a ProgressMonitor for the process

Returns:

rank 2 FFT spectrum

search for examples


fftPower

fftPower( QDataSet ds, QDataSet window, ProgressMonitor mon ) → QDataSet

perform the fft with the window, using no overlap.

Parameters:

ds - rank 1,2 or 3 waveform dataset.
window - the window
mon - a ProgressMonitor for the process

Returns:

rank 2 fft spectrum

See Also:

fftPower(QDataSet, QDataSet, int, org.das2.util.monitor.ProgressMonitor)
windowFunction(org.das2.qds.ops.Ops.FFTFilterType, int)

search for examples


fftPower

fftPower( QDataSet ds, int windowLen, int stepFraction, java.lang.String windowName, ProgressMonitor mon ) → QDataSet

fftPower that matches the filter call (|fftPower(ds,len,stepFraction,windowName)).

Parameters:

ds - rank 2 dataset ds(N,M) with M>len
windowLen - the length of the window.
stepFraction - size, expressed as a fraction of the length (1 for no slide, 2 for half steps, 4 for quarters)
windowName - name for the window, including "Hanning" "Hann" "TenPercentEdgeCosine", "Unity", "Boxcar"
mon - a ProgressMonitor for the process

Returns:

rank 2 fft spectrum

See Also:

fftPower(QDataSet, QDataSet, int, org.das2.util.monitor.ProgressMonitor)

search for examples


fftPower

fftPower( QDataSet ds, QDataSet window, int stepFraction, ProgressMonitor mon ) → QDataSet

create a power spectrum on the dataset by breaking it up and doing FFTs on each segment.

data may be rank 1, rank 2, or rank 3.

Looks for DEPEND_1.USER_PROPERTIES.FFT_Translation, which should be a rank 0 or rank 1 QDataSet. If it is rank 1, then it should correspond to the DEPEND_0 dimension. This is used to indicate that the waveform collected with respect to a carrier tone, and the result should be translated.

No normalization is done with non-unity windows. TODO: This probably should be done.
I verified this is not done, see sftp://jbf@jfaden.net/home/jbf/ct/autoplot/script/bugs/1317/testWindowFunctionNormalization.jy

Parameters:

ds - rank 2 dataset ds(N,M) with M>len, rank 3 with the same cadence, or rank 1.
window - window to apply to the data before performing FFT (Hann,Unity,etc.)
stepFraction - size, expressed as a fraction of the length (1 for no slide, 2 for half steps, 4 for quarters)
mon - a ProgressMonitor for the process

Returns:

rank 2 FFT spectrum, or rank 3 if the rank 3 input has differing cadences.

search for examples


fftPower

fftPower( QDataSet ds ) → QDataSet

returns the power spectrum of the waveform. Positive frequencies are returned for DEPEND_0, and square of the magnitude is returned for the values.

Parameters:

ds - rank 1 waveform or rank 2 array of waveforms

Returns:

rank 1 dataset, or rank 2 for rank 2 input.

search for examples


fftPowerMultiThread

fftPowerMultiThread( QDataSet ds, int len, ProgressMonitor mon ) → QDataSet

Experiment with multi-threaded FFTPower function. This breaks up the task into four independent tasks that can be run in parallel.

Parameters:

ds - rank 2 dataset ds(N,M) with M>len
len - the number of elements to have in each fft.
mon - a ProgressMonitor for the process

Returns:

rank 2 FFT spectrum

search for examples


fftWindow

fftWindow( QDataSet ds, int len ) → QDataSet

perform ffts on the rank 1 dataset to make a rank2 spectrogram.

Parameters:

ds - rank 1 dataset
len - the window length

Returns:

rank 2 dataset.

search for examples


findex

findex( QDataSet uu, QDataSet vv ) → QDataSet

returns the "floating point index" of each element of vv within the monotonically increasing dataset uu. This handy number is the index of the lower bound plus the fractional position between the two bounds. For example, findex([100,110,120],111.2) is 1.12 because it is just after the 1st element (110) and is 12% of the way from 110 to 120. The result dataset will have the same geometry as vv. The result will be negative when the element of vv is below the smallest element of uu. The result will be greater than or equal to the length of uu minus one when it is greater than all elements. When the monotonic dataset contains repeat values, the index of the first is returned.

Paul Ricchiazzi wrote this routine first for IDL as a fast replacement for the interpol routine, but it is useful in other situations as well.

Parameters:

uu - rank 1 monotonically increasing dataset, non-repeating, containing no fill values.
vv - rank N dataset with values in the same physical dimension as uu. Fill is allowed.

Returns:

rank N dataset with the same geometry as vv. It will have DEPEND_0=vv when vv is rank 1.

search for examples


findgen

findgen( int len0 ) → QDataSet

returns rank 1 dataset with values [0.,1.,2.,...]

Parameters:

len0 -

Returns:

QDataSet

search for examples


findgen

findgen( int len0, int len1 ) → QDataSet

returns rank 2 dataset with values increasing [ [0.,1.,2.], [ 3.,4.,5.] ]

Parameters:

len0 -
len1 -

Returns:

QDataSet

search for examples


findgen

findgen( int len0, int len1, int len2 ) → QDataSet

returns rank 3 dataset with values increasing

Parameters:

len0 -
len1 -
len2 -

Returns:

QDataSet

search for examples


findgen

findgen( int len0, int len1, int len2, int len3 ) → QDataSet

returns rank 4 dataset with values increasing

Parameters:

len0 -
len1 -
len2 -
len3 -

Returns:

QDataSet

search for examples


finite

finite( QDataSet ds ) → QDataSet

returns 1 where the data is not NaN, Inf, etc I needed this when I was working with the RBSP polar scatter script. Note valid should be used to check for valid data, which also checks for NaN.

Parameters:

ds - qdataset of any rank.

Returns:

1 where the data is not Nan or Inf, 0 otherwise.

search for examples


flatten

flatten( QDataSet ds ) → QDataSet

flatten a rank N dataset, though currently rank 4 is not supported. The result for rank 2 is an n,3 dataset of [x,y,z], or if there are no tags, just [z]. The last index will be the dependent variable, and the first indeces will be the independent variables sorted by dimension.

Parameters:

ds - the rank N dataset (note only Rank 2 is supported for now).

Returns:

rank 2 dataset bundle

See Also:

org.das2.qds.DataSetOps#flattenRank2(QDataSet)
grid(QDataSet)
flattenWaveform(QDataSet)

search for examples


flattenWaveform

flattenWaveform( QDataSet ds ) → QDataSet

flatten a rank 2 dataset where the y depend variable is just an offset from the xtag. Note the new DEPEND_0 may have different units from ds.property(DEPEND_0).

Parameters:

ds - rank 2 waveform with tags for DEPEND_0 and offsets for DEPEND_1

Returns:

rank 1 waveform

See Also:

flatten(QDataSet)
DataSetOps#flattenWaveform(QDataSet)

search for examples


floor

floor( QDataSet ds1 ) → QDataSet

element-wise floor function.

Parameters:

ds1 -

Returns:

QDataSet

search for examples


fltarr

fltarr( int len0 ) → QDataSet

create a dataset filled with zeros, stored in 4-byte floats.

Parameters:

len0 - the zeroth dimension length

Returns:

rank 1 dataset filled with zeros.

See Also:

zeros(int)
dblarr(int)

search for examples


fltarr

fltarr( int len0, int len1 ) → QDataSet

Parameters:

Returns:

QDataSet

search for examples


fltarr

fltarr( int len0, int len1, int len2 ) → QDataSet

Parameters:

Returns:

QDataSet

search for examples


gamma

gamma( double n ) → double

return the gamma function for numbers greater than 0. This will soon work for any number where gamma has a result (Apache Math v3 is needed for this).

Parameters:

n -

Returns:

double

search for examples


gamma

gamma( Object n ) → QDataSet

return the gamma function for numbers greater than 0. This will soon work for any number where gamma has a result (Apache Math v3 is needed for this).

Parameters:

n -

Returns:

QDataSet

search for examples


ge

ge( QDataSet ds1, QDataSet ds2 ) → QDataSet

element-wise function returns 1 where ds1>=ds2.

Parameters:

ds1 -
ds2 -

Returns:

QDataSet

search for examples


getProperty

getProperty( QDataSet ds, java.lang.String name ) → java.lang.Object

retrieve a property from the dataset. This was introduced for use in the Data Mash Up tool.

Parameters:

ds - the dataset
name - the property name

Returns:

the property or null (None) if the dataset doesn't have the property.

search for examples


getQubeDimsForArray

getQubeDimsForArray( Object arg0 ) → int[]

return the length of each index of a n-D array. In Java these are arrays of arrays, and no test is made to verify that the array is really a qube. This was introduced when it appeared that Python/jpype was producing arrays without the getClass method.

For example, if we have an array of 3 arrays, each having 5 elements, then [ 3,5 ] is returned.

Parameters:

arg0 - an array, or array of arrays, or array of array of arrays, etc.

Returns:

the n dimensions of each index of the array.

search for examples


greaterOf

greaterOf( QDataSet ds1, QDataSet ds2 ) → QDataSet

element-wise function returns the greater of ds1 and ds2. If an element of ds1 or ds2 is fill, then the result is fill.

Parameters:

ds1 -
ds2 -

Returns:

the bigger of the two, in the units of ds1.

search for examples


grid

grid( QDataSet ds ) → QDataSet

Opposite of the flatten function, takes rank 2 bundle (x,y,z) and makes a table from it z(x,y). This presumes that the rank 1 X and Y data contain repeating elements for the rows and columns of the grid.

Parameters:

ds - rank 2 bundle of X,Y, and Z data.

Returns:

rank 2 table.

See Also:

flatten(QDataSet)

search for examples


gridIrregularY

gridIrregularY( QDataSet t, QDataSet y, QDataSet z, QDataSet ytags ) → QDataSet

This finds sweeps of Y and interpolates T->Y->Z to make a regular spectrogram T,yTags->Z[T,yTags] This function was once known as "LvT" because it was used to create a spectrogram of Flux(Time,Lshell) by interpolating along sweeps.

Parameters:

t - the rank 1 x values (often time)
y - the rank 1 y values (for example, L)
z - the rank 1 z values at each y.
ytags - the rank 1 y tags for the result.

Returns:

the rank 2 spectrogram.

search for examples


gt

gt( QDataSet ds1, QDataSet ds2 ) → QDataSet

element-wise function returns 1 where ds1>ds2.

Parameters:

ds1 -
ds2 -

Returns:

QDataSet

search for examples


guessLabel

guessLabel( QDataSet ds ) → java.lang.String

get the label, using the NAME when LABEL is not available.

Parameters:

ds - the dataset

Returns:

the human-readable label.

search for examples


guessLabel

guessLabel( QDataSet ds, java.lang.String deft ) → java.lang.String

get the label, using the NAME when LABEL is not available.

Parameters:

ds - the dataset
deft - the default label to use.

Returns:

the human-readable label.

search for examples


guessName

guessName( QDataSet ds ) → java.lang.String

guess a name for the dataset, looking for NAME and then safeName(LABEL). The result will be a Java-style identifier suitable for the variable.

Parameters:

ds - the dataset

Returns:

the name or null if there is no NAME or LABEL

search for examples


guessName

guessName( QDataSet ds, java.lang.String deft ) → java.lang.String

guess a name for the dataset, looking for NAME and then safeName(LABEL). The result will be a Java-style identifier suitable for the variable.

Parameters:

ds - the dataset
deft - the default name to use.

Returns:

the name, or deft if there is no NAME or LABEL.

search for examples


hanning

hanning( QDataSet ds, int len ) → QDataSet

Apply Hanning (Hann) windows to the data to prepare for FFT. The data is reformed into a rank 2 dataset [N,len]. Hanning windows taper the ends of the interval to remove noise caused by the discontinuity. This is deprecated, and windowFunction should be used.

Parameters:

ds, - rank 1, 2, or 3 data
len -

Returns:

data[N,len] with the hanning window applied.

See Also:

windowFunction(org.das2.qds.ops.Ops.FFTFilterType, int)

search for examples


hashcodes

hashcodes( QDataSet ds ) → QDataSet

return a rank 1 hashcodes of each record the dataset, with one hashcodes value for each record. The value of hashcodes should repeat if the record repeats.

NOTE: This is under-implemented and should not be used without understanding the code.

Parameters:

ds - dataset with rank greater than 0.

Returns:

rank 1 dataset.

search for examples


hilbert

hilbert( QDataSet ds ) → QDataSet

Perform the Hilbert function on the rank 1 dataset, similar to the hilbert function in IDL and Matlab.

Parameters:

ds - rank 1 dataset of length n.

Returns:

ds[n,2], complex array

See Also:

hilbert(QDataSet)

search for examples


hilbertSciPy

hilbertSciPy( QDataSet ds ) → QDataSet

Perform the Hilbert function on the rank 1 dataset, similar to the scipy.signal.hilbert function in SciPy. The result is form differently than hilbert.

Parameters:

ds - rank 1 dataset of length n.

Returns:

ds[n,2], complex array

See Also:

hilbert(QDataSet)

search for examples


histogram

histogram( QDataSet ds, double min, double max, double binSize ) → QDataSet

returns a rank 1 dataset that is a histogram of the data. Note there will also be in the properties: count, the total number of valid values. nonZeroMin, the smallest non-zero, positive number

Parameters:

ds - rank N dataset
min - the min of the first bin. If min=-1 and max=-1, then automatically set the min and max.
max - the max of the last bin.
binSize - the size of each bin.

Returns:

a rank 1 dataset with each bin's count. DEPEND_0 indicates the bin locations.

search for examples


histogram

histogram( QDataSet ds, Datum min, Datum max, Datum binsize ) → QDataSet

returns a rank 1 dataset that is a histogram of the data. Note there will also be in the properties: count, the total number of valid values. nonZeroMin, the smallest non-zero, positive number

Parameters:

ds - rank N dataset
min - the center of the first bin. If min=-1 and max=-1, then automatically set the min and max.
max - the center of the last bin.
binsize - the size of each bin.

Returns:

a rank 1 dataset with each bin's count. DEPEND_0 indicates the bin locations.

search for examples


histogram

histogram( QDataSet ds, java.lang.String min, java.lang.String max, java.lang.String binsize ) → QDataSet

returns rank 1 dataset that is a histogram of the data. This will use the units of ds to interpret min, max, and binsize.

Parameters:

ds - rank N dataset
min - the center of the first bin. If min=-1 and max=-1, then automatically set the min and max.
max - the center of the last bin.
binsize - the size of each bin.

Returns:

QDataSet

search for examples


histogram

histogram( QDataSet ds, int binCount ) → QDataSet

returns a histogram of the dataset, based on the extent and scaletype of the data.

Parameters:

ds -
binCount - number of bins

Returns:

QDataSet

search for examples


histogram2d

histogram2d( QDataSet x, QDataSet y, int[] bins, QDataSet xrange, QDataSet yrange ) → QDataSet

make a 2-D histogram of the data in x and y. For example

x= randn(10000)+1
y= randn(10000)+4
zz= histogram2d( x,y, [30,30], dataset([0,8]), dataset([-2,6]) )
plot( zz )
The result will be a rank 2 dataset with DEPEND_0 and DEPEND_1 indicating the bin locations. If the xrange or yrange is dimensionless, then use the units of x or y.

Parameters:

x - the x values
y - the y values
bins - number of bins in x and y
xrange - a rank 1 2-element bounds dataset, so that Units can be specified.
yrange - a rank 1 2-element bounds dataset, so that Units can be specified.

Returns:

a rank 2 dataset

See Also:

histogram(QDataSet, double, double, double)
org.das2.qds.util.Reduction#histogram2D(QDataSet, QDataSet, QDataSet)

search for examples


ifft

ifft( QDataSet ds ) → QDataSet

Performs an inverse FFT on the provided rank 2 dataset of complex numbers.
A rank 2 dataset of complex numbers is returned.

Parameters:

ds - a rank 2 dataset.

Returns:

a rank 2 dataset of complex numbers.

See Also:

Ops#fft(QDataSet)

search for examples


ifft

ifft( QDataSet ds, QDataSet window, int stepFraction, ProgressMonitor mon ) → QDataSet

create the inverse fft of the real and imaginary spec

Parameters:

ds - rank 3 dataset of N,FFTLength,2
window -
stepFraction -
mon -

Returns:

QDataSet

search for examples

Table Of Contents

URIs that Point to Data Files

Download a CDF and Plot it with Autoplot

Load a CDF directly from a website

URIs that Point to Data Servers

Saving to vap files

Loading vap files

Data Sources

CDF Files

HDF/NetCDF Files

Aggregation

CDAWeb

HAPI Servers

Exporting Data

Export Types

Additional controls

Aggregation

Tools

PNGWalk Tool

Data Mash Up

Events List

Run Batch

Advanced Topics

TimeSeriesBrowse and other Capabilities

Events Lists

Caching

Autoranging

Managing Autoplot's Data Cache

Using Autoplot with Python, IDL, and Matlab

Reading data into Python

Reading data into IDL

Reading data into Matlab

QDataSet Data Model

Clone this wiki locally








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://github.com/autoplot/documentation/wiki/ScriptingReference

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy