Content-Length: 84315 | pFad | http://ja.wikipedia.org/wiki/%E4%BA%94%E8%83%9E%E4%BD%93%E6%95%B0

五胞体数 - Wikipedia コンテンツにスキップ

五胞体数

出典: フリー百科事典『ウィキペディア(Wikipedia)』
n=5のときの五胞体数である70個の。最初の5つの三角錐数に等しい個数の球を順番に「3次元的な段」として重ねたものである

五胞体数(ごほうたいすう、: pentatope number)は、点を右図のように五胞体の形に並べたとき、そこに含まれる点の総数にあたる自然数である。三角錐数を 1 から小さい順に加えた数と定義してもよい。例:15(=1 + 4 + 10)、70(=1 + 4 + 10 + 20 + 35)

n 番目の五胞体数 Pn は 1 から n 番目までの三角錐数 n(n + 1)(n + 2)/6 までの和に等しいので

また組み合わせの記号を用いると となる。

五胞体数を小さい順に列記すると

1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, …(オンライン整数列大辞典の数列 A332

3つの連続する五胞体数のうち2つは五角数である。なぜなら 3n − 2 番目の五胞体数は (3n2n)/2 番目の五角数であり、3n − 1 番目の五胞体数は (3n2 + n)/2 番目の五角数だからである。

パスカルの三角形では左上(または右上)から5列目の数が五胞体数にあたる。

五胞体数の逆数総和

となる。

関連項目

[編集]

外部リンク

[編集]
  • Weisstein, Eric W. "Pentatope Number". mathworld.wolfram.com (英語).








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://ja.wikipedia.org/wiki/%E4%BA%94%E8%83%9E%E4%BD%93%E6%95%B0

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy