Bình phương
Giao diện
Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. |
Bài này có liệt kê các nguồn tham khảo và/hoặc liên kết ngoài, nhưng nội dung trong thân bài cần được dẫn nguồn đầy đủ bằng các chú thích trong hàng để người khác có thể kiểm chứng. (August 2015) |
Bình phương hay mũ 2 là phép toán áp dụng cho mọi số thực hoặc số phức. Bình phương của một số là tích của số đó với chính bản thân nó 2 lần.[1] Một cách tổng quát, bình phương chính là lũy thừa bậc 2 của một số,[1] và phép toán ngược với nó là phép khai căn bậc 2.
Bảng bình phương
[sửa | sửa mã nguồn]n | n2 | n | n2 | n | n2 | ||
---|---|---|---|---|---|---|---|
1 | 1 | 12 | 144 | 23 | 529 | ||
2 | 4 | 13 | 169 | 24 | 576 | ||
3 | 9 | 14 | 196 | 25 | 625 | ||
4 | 16 | 15 | 225 | 26 | 676 | ||
5 | 25 | 16 | 256 | 27 | 729 | ||
6 | 36 | 17 | 289 | 28 | 784 | ||
7 | 49 | 18 | 324 | 29 | 841 | ||
8 | 64 | 19 | 361 | 30 | 900 | ||
9 | 81 | 20 | 400 | 31 | 961 | ||
10 | 100 | 21 | 441 | 32 | 1024 | ||
11 | 121 | 22 | 484 | 33 | 1089 |
Tính chất
[sửa | sửa mã nguồn]Bình phương của số thực luôn là số ≥0. Bình phương của một số nguyên gọi là số chính phương.
Tính chất của số chính phương
[sửa | sửa mã nguồn]- Số chính phương chỉ có thể tận cùng là: 0; 1; 4; 5; 6; 9. Số chính phương không thể tận cùng là: 2; 3; 7; 8.
- Một số chính phương có tận cùng là 5 thì chữ số hàng chục là 2. Một số chính phương có tận cùng là 6 thì chữ số hàng chục là lẻ.
- Chứng minh: Số chính phương có tận cùng là 5 suy ra có tận cùng là . Đặt . Ta có , có hai chữ số tận cùng là 25, do đó chữ số hàng chục là 2. Số chính phương có tận cùng là 6 suy ra có tận cùng là 4 hoặc 6. Xét và . Do đó chữ số hàng chục là số lẻ.
- Khi phân tích một số chính phương ra thừa số nguyên tố thì các thừa số chỉ chứa số mũ chẵn.
- Số lượng các ước của một số chính phương là một số lẻ.
- N là số chính phương thì N chia hết cho một số nguyên tố khi và chỉ khi N chia hết cho bình phương của số nguyên tố đó (trừ trường hợp N=0; N=1).
- Tích của nhiều số chính phương là một số chính phương.
- Ví dụ: a2 × b2 × c2 = (a × b × c)2
Ký hiệu
[sửa | sửa mã nguồn]Số mũ ² bên phải của số được bình phương.
Ví dụ
[sửa | sửa mã nguồn]- 22 = 2 × 2 = 4
- 152 = 15 × 15 = 225
- (- 0,5)2 = 0,25
Chú thích
[sửa | sửa mã nguồn]Thư mục
[sửa | sửa mã nguồn]- Phan Đức Chính, Tôn Thân, Vũ Hữu Bình, Phạm Gia Đức, Trần Luận, 2011, Toán 6 (tập một) (tái bản lần thứ chín), Nhà xuất bản giáo dục Việt Nam.
Các chủ đề chính trong toán học |
---|
Nền tảng toán học | Đại số | Giải tích | Hình học | Lý thuyết số | Toán học rời rạc | Toán học ứng dụng | Toán học giải trí | Toán học tô pô | Xác suất thống kê |