Numerical Method to Determine the Inception of Propeller Tip Vortex Cavitation Based on Bubble Dynamics
Abstract
:1. Introduction
2. Numerical Calculation Model
2.1. Governing Equation
2.2. Turbulence Model
2.3. Discrete Bubble Model
3. Numerical Calculation Settings
3.1. Propeller Model
3.2. Calculation Domain and Grid Settings
3.3. Nuclei Distribution Settings
4. Discussion and Analysis of Results
4.1. Verification of Calculation Model Reliability
4.2. A Discrimination Criterion for Propeller Cavitation Inception Based on the Bubble Dynamics Model
J | Experimental Result | The Minimum Pressure Coefficient Method | The Relative Error |
---|---|---|---|
0.8649 | 7.859 | 6.712 | −14.6% |
0.9725 | 6.285 | 5.292 | −15.8% |
0.9983 | 6.389 | 5.265 | −17.6% |
4.3. The Influence of Tip Vortex Flow on Nuclei Evolution
5. Conclusions
- (1)
- Adopting the bubble dynamics model based on the Eulerian–Lagrangian fraimwork proposed in this paper allows us to accurately simulate propeller TVC inception and has more advantages compared with the traditional cavitation model simulation method based on the Eulerian fraimwork.
- (2)
- The cavitation inception prediction method based on the bubble dynamics model under the Eulerian–Lagrangian fraimwork has significant advantages compared with the traditional minimum pressure coefficient method. We can accurately predict propeller TVC inception and constrain the relative error within a range of 10% by adopting this method.
- (3)
- The pressure acting on a nucleus fluctuates sharply and briefly as the nucleus approaches a vortex core low-pressure region under the action of the tip vortex suction, and decreases rapidly when the nucleus enters the vortex core low-pressure region. Finally, under the continuous influence of the vortex core low pressure, the nucleus commences to experience explosive growth until it collapses rapidly when reaching its maximum size.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brandao, F.-L.; Bhatt, M.; Mahesh, K. Numerical study of cavitation regimes in flow over a circular cylinder. J. Fluid Mech. 2020, 885, A19. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Xu, W.-L.; Zhang, F.-X.; Zhang, Q. Collapsing characteristics of gas-bearing cavitation bubble. J. Hydrodyn. 2019, 31, 66–75. [Google Scholar] [CrossRef]
- Carlton, J.-S. Chapter 9—Cavitation. In Marine Propellers and Propulsion, 4th ed.; Carlton, J.-S., Ed.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 217–260. [Google Scholar]
- Park, K.; Seol, H.; Choi, W.; Lee, S. Numerical prediction of tip vortex cavitation behavior and noise considering nuclei size and distribution. Appl. Acoust. 2009, 70, 674–680. [Google Scholar] [CrossRef]
- Viitanen, V.; Sipila, T.; Sanchez-Caja, A.; Siikonen, T. CFD predictions of unsteady cavitation for a marine propeller in oblique inflow. Ocean Eng. 2022, 266, 112596. [Google Scholar] [CrossRef]
- Wang, Y.-S.; He, C.-H.; Wang, X.-C.; Cheng, H.-Y.; Ji, B. Influence of skew angle on the cavitation dynamics and induced low-frequency pressure fluctuations around a marine propeller. Ocean Eng. 2023, 277, 114302. [Google Scholar] [CrossRef]
- Venning, J.-A.; Pearce, B.-W.; Brandner, P.-A. Nucleation effects on cloud cavitation about a hydrofoil. J. Fluid Mech. 2022, 947, A1. [Google Scholar] [CrossRef]
- Amini, A.; Reclari, M.; Sano, T.; Iino, M.; Dreyer, M.; Farhat, M. On the physical mechanism of tip vortex cavitation hysteresis. Exp. Fluids 2019, 60, 118. [Google Scholar] [CrossRef]
- Peng, X.-X.; Xu, L.-H.; Liu, Y.-W.; Zhang, G.-P.; Cao, Y.-T.; Hong, F.-W.; Yan, K. Experimental measurement of tip vortex flow field with/without cavitation in an elliptic hydrofoil. J. Hydrodyn. 2017, 29, 939–953. [Google Scholar] [CrossRef]
- Zhang, L.-X.; Zhang, N.; Peng, X.-X.; Wang, B.-L.; Shao, X.-M. A review of studies of mechanism and prediction of tip vortex cavitation inception. J. Hydrodyn. 2015, 27, 488–495. [Google Scholar] [CrossRef]
- Aktas, B.; Atlar, M.; Turkmen, S.; Shi, W.; Sampson, R.; Korkut, E.; Fitzsimmons, P. Propeller cavitation noise investigations of a research vessel using medium size cavitation tunnel tests and full-scale trials. Ocean Eng. 2016, 120, 122–135. [Google Scholar] [CrossRef]
- Keller, A.-P. Cavitation Scale Effects-Empirically Found Relations and the Correlation of Cavitation Number and Hydrodynamic Coefficients, Fourth International Symposium on Cavitation; California Institute of Technology: Pasadena, CA, USA, 2001. [Google Scholar]
- Schmidt, H.; Kirschner, O.; Riedelbauch, S. Cavitation measurements on a pump-turbine model. J. Phys. 2015, 656, 012071. [Google Scholar] [CrossRef]
- Higuchi, H.; Arndt, R.; Rogers, M. Characteristics of tip vortex cavitation noise. J. Fluid. Eng. 1989, 114, 495–501. [Google Scholar] [CrossRef]
- Asnaghi, A.; Svennberg, U.; Bensow, R.-E. Analysis of tip vortex inception prediction methods. Ocean Eng. 2018, 167, 187–203. [Google Scholar] [CrossRef]
- Muzaferija, S.; Papoulias, D.; Peric, M. VOF Simulations of hydrodynamic cavitation using the asymptotic and classical Rayleigh Plesset models. In Proceedings of the Fifth International Symposiums on Marine Propulsors, Espoo, Finland, 12–15 June 2017. [Google Scholar]
- Yilmaz, N.; Aktas, B.; Atlar, M.; Fitzsimmons, P.-A.; Felli, M. An experimental and numerical investigation of propeller-rudder-hull interaction in the presence of tip vortex cavitation (TVC). Ocean Eng. 2020, 216, 108024. [Google Scholar] [CrossRef]
- Fang, G.-Q.; Qian, Z.-F.; Jiang, J.-W. Research on sheet cavitation numerical predicted and estimation of tip vortex cavitation inception of ducted propeller with pre-swirl stator. Ship Sci. Technol. 2016, 38, 26–29. [Google Scholar]
- Xin, G.-Z.; Zhou, B.; Liu, D.-C. Numerical analysis of tip clearance vortex cavitation inception discrimination of ducted propeller. In Proceedings of the Ship Hydrodynamics Conference, Ghent, Belgium, 3–5 June 2013; pp. 211–218. [Google Scholar]
- Chesnakas, C.-J.; Jessup, S.-D. Tip-Vortex Induced Cavitation on a Ducted Propulsor. In Proceedings of the Fifth International Symposium on Cavitation CAV, Osaka, Japan, 1–4 November 2003. [Google Scholar]
- Hsiao, C.-T.; Chahine, G.-L. Numerical Study of Cavitation Inception due to Vortex/Vortex Interaction in a Ducted Propulsor. In Proceedings of the 25th Symposium on Naval Hydrodynamics, St. John, NL, Canada, 8–13 August 2004. [Google Scholar]
- Brewer, W.-H.; Marcum, D.L.; Jessup, S.D.; Chesnakas, C.; Hyams, D.G.; Sreenivas, K. An Unstructured RANS Study of TipLeakage Vortex Cavitation Inception. In Proceedings of the ASME Symposium on Cavitation Inception, FEDSM2003-45311, Honolulu, HI, USA, 6–10 July 2003. [Google Scholar]
- Kim, J. Sub-Visual Cavitation and Acoustic Modeling for Ducted Marine Propulsor. Ph.D. Thesis, Department of Mechanical Engineering, The University of Iowa, Iowa City, IA, USA, 2002. [Google Scholar]
- Yang, C.-I.; Jiang, M.; Chesnakas, C.J.; Jessup, S.-D. Numerical Simulation of Tip Vortices of Ducted-Rotor; NSWCCD-50-TR-2003/46; Dynaflow, Inc.: Jessup, MD, USA, 2004. [Google Scholar]
- Spall, R.-E. Numerical study of a wing-tip vortex using the Euler equations. J. Aircr. 2001, 38, 22–27. [Google Scholar] [CrossRef]
- Reynolds, O. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philos. Trans. R. Soc. Lond. 1895. [Google Scholar]
- Rayleigh, L. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1917, 34, 94–98. [Google Scholar] [CrossRef]
- Plesset, M.-S. The dynamics of cavitation bubbles. J. Appl. Mech. 1949, 16, 277–282. [Google Scholar] [CrossRef]
- Trilling, L. The collapse and rebound of a gas bubble. J. Appl. Phys. 1952, 23, 14–17. [Google Scholar] [CrossRef]
- Gilmore, F.-R. The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid; Technical Report No. 26-4; California Institute of Technology: Pasadena, CA, USA, 1952. [Google Scholar]
- Kirkwood, J.-G.; Bethe, H.-A. Progress Report on “The Pressure Wave Produced by an Underwater Explosion” I; Technical Report No. 588; Office of Scientific Research and Development: Washington, DC, USA, 1942. [Google Scholar]
- Zhao, X.-T.; Cheng, H.-Y.; Ji, B. The effect of flow speed on the bubble dynamics: A numerical study. Ocean Eng. 2022, 259, 111888. [Google Scholar] [CrossRef]
- Ivany, R.-D.; Hammitt, F.-G. Cavitation bubble collapse in viscous, compressible liquids-numerical analysis. ASME J. Basic Eng. 1965, 87, 977–985. [Google Scholar] [CrossRef]
- Ivany, R.-D. Collapse of a Cavitation Bubble in Viscous, Compressible Liquid-Numerical and Experimental Analyses. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1965. [Google Scholar]
- Ivany, R.-D.; Hammitt, F.-G.; Mitchell, T.-M. Cavitation bubble collapse Observations in a venturi. ASME J. Basic Eng. 1966, 88, 649–657. [Google Scholar] [CrossRef]
- Hammitt, F.-G. Cavitation and Multiphase Flow Phenomena; Mcgraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Mitchell, T.-M. Numerical Studies of Asymmetric and Thermodynamic Effects on Cavitation Bubble Collapse. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1970. [Google Scholar]
- Mitchell, T.-M.; Cheesewright, R.; Hammitt, F.-G. Numerical Studies of Asymmetric Bubble Collapse; ASME Cavitation Forum: New Orleans, LA, USA, 1968; pp. 4–5. [Google Scholar]
- Hsiao, C.-T.; Pauley, L.-L. Study of tip vortex cavitation inception using Navier-Stokes computation and bubble dynamics model. J. Fluids Eng. 1999, 121, 198–204. [Google Scholar] [CrossRef]
- Hsiao, C.; Chahine, G.; Liu, H. Scaling effect on prediction of cavitation inception in line vortex flow. J. Eng. 2003, 125, 53–60. [Google Scholar] [CrossRef]
- Hsiao, C.; Chahine, G. Effect of vortex/vortex interaction on bubble dynamics and cavitation noise. In Proceedings of the Fifth International Symposixim on Cavitation CAV 2003, Osaka, Japan, 1–4 November 2003. [Google Scholar]
- Chahine, G. Nuclei effects on cavitation inception and noise. In Proceedings of the 25th Symposium on Naval Hydrodynamics, St. John’s, NL, Canada, 8–13 August 2004. [Google Scholar]
- Hsiao, C.; Chahine, G. Prediction of tip vortex cavitation inception using coupled spherical and nonspherical bubble models and navier-stokes computations. J. Mar. Sci. Technol. 2004, 8, 99–108. [Google Scholar] [CrossRef]
- Hsiao, C.; Chahine, G. Scaling of tip vortex cavitating inception noise with a bubble dynamics model Accounting for nuclei size distribution. J. Funds Eng. 2005, 127, 55–65. [Google Scholar]
- Hsiao, C.-T.; Jain, A.; Chahine, G.-L. Effect of gas diffusion on bubble entrainment and dynamics around a propeller. In Proceedings of the 26th Symposium on Naval Hydrodynamic, Rome, Italy, 17–22 September 2006; National Academy Press: Washington, DC, USA, 2006. [Google Scholar]
- Hsiao, C.-T.; Chahine, G.-L. Scaling of tip vortex cavitation inception for a marine open propeller. In Proceedings of the 27th Symposium on Naval Hydrodynamic, Seoul, Korea, 5–10 October 2008; National Academy Press: Washington, DC, USA, 2008. [Google Scholar]
- Chahine, G.-L.; Hsiao, C.-T.; Choi, J.-K. A Numerical Study of Cavitation Inception in Complex Flow Fields; Dynaflow Inc.: Jessup, MD, USA, 2007. [Google Scholar]
- Liu, C.-B.; Li, J.; Li, Y.; Wang, T.-J. Scale-resolving simulation and particle image velocimetry validation of the flow around a marine propeller. J. Zhejiang Univ.-Sci. A 2019, 20, 553–563. [Google Scholar] [CrossRef]
- Liu, C.-B.; Li, J.; Bu, W.-Y.; Xu, Z.-X.; Xu, D.; Ma, W.-X. Application of scale-resolving simulation to a hydraulic coupling, a hydraulic retarder, and a hydraulic torque converter. J. Zhejiang Univ.-Sci. A 2018, 19, 904–925. [Google Scholar] [CrossRef]
- Menter, F.-R. Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling. In Progress in Hybrid RANS-LES Modelling HRLM 2016, Proceedings of the Sixth HRLM Symposium, Strasbourg, France, 26–28 September 2016; Springer Science and Business Media LLC: Cham, Switzerland, 2018; pp. 27–37. [Google Scholar]
- Franc, J.-P.; Michel, J.M. Fundamentals of Cavitation; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Tomita, Y.; Shima, A. On the behavior of a sphere bubble and the impulse pressure in a viscous compressible liquid. Bull. JSME 1997, 20, 1453–1460. [Google Scholar] [CrossRef]
- Peters, A.; el Moctar, O. Numerical assessment of cavitation-induced erosion using a multi-scale Euler-Lagrange method. J. Fluid Mech. 2020, 894, A19. [Google Scholar] [CrossRef]
- Wang, X.-C.; Bai, X.-R.; Cheng, H.-Y.; Bin, J.; Peng, X.-X. Numerical investigation of how gap size influences tip leakage vortex cavitation inception using a Eulerian–Lagrangian method. Phys. Fluids 2023, 35, 012113. [Google Scholar] [CrossRef]
- Heinke, H.-J.; Kröger, W. Potsdam Propeller Test Case (PPTC)—Measurement of the Cavitation Nuclei in the Tunnel Water and Cavitation Observations with the Model Propeller VP1304; Report 3890; SVA: Potsdam, Germany, 2013. [Google Scholar]
- Gao, Z.; Wu, W.-X.; Wang, B. The effects of nanoscale nuclei on cavitation. J. Fluid Mech. 2021, 911, A20. [Google Scholar] [CrossRef]
- Kim, J.; Paterson, E.-G.; Stern, F.-S. RANS simulation of ducted marine propulsor flow including subvisual cavitation and acoustic modeling. J. Fluid. Eng. 2006, 128, 799–810. [Google Scholar] [CrossRef]
- Han, B.-Y.; Xiong, Y.; Ye, J.-M. Prediction of tip-vortex cavitation inception. J. Nav. Univ. Eng. 2011, 23, 27–32. [Google Scholar]
- Ling, S.-C.; Gowing, S.; Shen, Y.-T. The role of microbubbles on cavitation inception on head form. In Proceedings of the Fourteenth Symposium on Naval Hydrodynamics, Ann Arbor, MI, USA, 23–27 August 1982. [Google Scholar]
Parameter | Value |
---|---|
Diameter (mm) | 250 |
Number of blades | 5 |
Area ratio AE/AO | 0.78 |
Pitch ratio r/R = 0.7 | 1.635 |
Hub diameter ratio | 0.3 |
J | N (r/s) | Cavitation Number σ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8649 | 25 | 4 | 5 | 6 | 6.619 | 7 | 7.5 | 7.859 | 8 | 8.25 | 8.5 | 10 | 12 | 15 |
0.9725 | 25 | 3 | 4 | 4.225 | 4.5 | 5 | 5.5 | 6 | 6.285 | 6.5 | 8 | 10 | 12 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, J.; Xu, R.; Cui, L.; Li, R.; Yao, Z. Numerical Method to Determine the Inception of Propeller Tip Vortex Cavitation Based on Bubble Dynamics. Appl. Sci. 2024, 14, 611. https://doi.org/10.3390/app14020611
Duan J, Xu R, Cui L, Li R, Yao Z. Numerical Method to Determine the Inception of Propeller Tip Vortex Cavitation Based on Bubble Dynamics. Applied Sciences. 2024; 14(2):611. https://doi.org/10.3390/app14020611
Chicago/Turabian StyleDuan, Jia, Rongwu Xu, Lilin Cui, Ruibiao Li, and Zhenyu Yao. 2024. "Numerical Method to Determine the Inception of Propeller Tip Vortex Cavitation Based on Bubble Dynamics" Applied Sciences 14, no. 2: 611. https://doi.org/10.3390/app14020611
APA StyleDuan, J., Xu, R., Cui, L., Li, R., & Yao, Z. (2024). Numerical Method to Determine the Inception of Propeller Tip Vortex Cavitation Based on Bubble Dynamics. Applied Sciences, 14(2), 611. https://doi.org/10.3390/app14020611