Content-Length: 105549 | pFad | https://blog.csdn.net/mrdeam

步入烟尘-CSDN博客

自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

步入烟尘的博客

所有专栏都包含核心代码和详细步骤教程,助力您快速解决问题,欢迎订阅专栏。

  • 博客(658)
  • 收藏
  • 关注

原创 YOLOv8分割任务增强融合SDI与ASF-YOLO的新型特征金字塔网络

本文提出了基于(双向深度细化)和ASF(自适应特征融合)的全新特征金字塔网络(SDI-ASF-FPN),旨在提升YOLOv8在分割任务中的表现。模块创新性:SDI模块通过细化低层特征增强小目标的检测能力,ASF模块利用动态权重分配优化特征融合。两者结合显著改善了特征金字塔的表达能力。性能全面提升:在分割任务中,改进网络在多项指标上超越Baseline模型,尤其是在小目标分割和复杂场景中表现出色,分割mAP提高了3.4个百分点。计算效率优化。

2025-01-19 11:45:00 391

原创 SDI-BiFPN融合选择性膨胀卷积与双向特征融合的全新特征金字塔网络提升YOLOv8目标检测性能

SDI-BiFPNSDI模块:通过选择性膨胀卷积获取更大感受野。BiFPN模块:优化特征流方向,利用可学习权重实现特征融合。本文针对YOLOv8的Neck结构进行了创新性改进,提出了全新的SDI-BiFPN特征金字塔网络。检测性能显著提升:实验表明SDI-BiFPN在小目标检测能力上表现卓越,mAP提升超过3%。多模块协同优化:通过消融实验验证了SDI和BiFPN之间的互补性,有效增强模型的鲁棒性与泛化能力。轻量化与动态化探索。

2025-01-19 08:15:00 623

原创 改进YOLOv8主干网络-基于ResNet系列特征提取器的性能提升

选择合适的ResNet版本:根据任务需求选择轻量化(18、34)或深度(50、101)版本。调整网络接口:将ResNet输出的特征适配到YOLOv8的颈部结构。重新训练模型:对新结构进行迁移学习或从头训练。使用先前定义的#加载改进模型#配置超参数epochs=50,lr=0.01,

2025-01-18 23:45:00 184

原创 YOLOv8优化与创新-基于FasterBlock模块的C2f替代方案与性能提升

C2f模块的基本结构包含若干层级的卷积块,并通过残差连接实现信息的高效流动,适用于各种分辨率的特征提取。尽管FasterBlock已在性能、效率和参数量上展示了巨大的潜力,但其应用仍有广阔的探索空间。未来,我们将结合更多先进技术,如自监督学习和神经架构搜索(NAS),进一步优化FasterBlock结构,推动目标检测技术迈向新的高度。

2025-01-18 18:52:43 568

原创 优化YOLOv8模型-基于FasterBlock与C2f结构的创新改进与性能提升【YOLOv8】

通过引入FasterBlock二次创新C2f结构,我们成功地对YOLOv8模型进行了优化,显著降低了其参数量,并提升了推理速度,而精度保持不变甚至有所提升。该模型在多个实际应用场景中展现出了优异的性能,尤其是在嵌入式设备、移动端和自动驾驶等领域,具有广泛的应用潜力。未来的研究将进一步优化模型结构,探索更多的应用场景,为目标检测技术的发展做出贡献。

2025-01-18 18:50:57 278

原创 2025华数杯数学建模B题(中国工业未来的投资优先事项)—问题5解决全流程【解题思路+解题代码】

在第五问中,我们需要综合考虑增加国家国内生产总值(GDP)和改善人民生活就业的目标,确定中国应大力发展的行业,以确保国家财富和就业率的稳步增长。基于第三问和第四问的研究,并结合可持续发展原则和国家长期发展形势,我们将调整投资计划,并提供详细的分析和理由。

2025-01-11 11:46:58 198

原创 2025华数杯数学建模B题(中国工业未来的投资优先事项)—问题4解决全流程【解题思路+解题代码】

在第四问中,我们的目标是从促进就业和改善就业质量的角度,分析政府应优先投资的行业,并根据这一分析调整第三问中的投资计划。我们将考虑以下两种情境:

2025-01-11 11:45:01 304

原创 2025华数杯数学建模B题(中国工业未来的投资优先事项)—问题3解决全流程【解题思路+解题代码】

在第三问中,我们的任务是根据最大化国家财富生成、促进长期稳定经济增长和全面社会进步的目标,利用1万亿元的投资基金,选择合适的产业进行投资分配,以实现最高的国内生产总值(GDP)。我们需要分别考虑以下两种情况:

2025-01-11 11:43:19 181

原创 2025华数杯数学建模B题—中国工业未来的投资优先事项(完整解题流程+思路+建模过程记录)

本篇文章围绕中国未来的工业投资策略展开,涵盖了经济增长、就业提升及可持续发展的多个方面,通过数学建模和数据分析,提出了一系列关于投资资金如何合理分配的解决方案。行业间的相互关系分析我们分析了各行业间的协同效应和约束效应,发现高技术产业和绿色产业对推动经济转型具有关键作用,而制造业和基础设施建设依然是经济稳定增长的基础。投资与GDP的关系模型通过回归分析,我们确定了高技术产业、绿色产业和服务业对GDP增长的显著贡献。这为政府在资金分配时提供了重要参考,建议加大这些行业的投资。投资资金分配方案。

2025-01-11 11:33:23 869

原创 2025华数杯数学建模B题—问题2解决全流程【解题思路+解题代码】

在第一问中,我们已经建立了一个基本的产业间相互关系模型,并通过优化投资组合来寻求产业投资的最优分配。接下来,第二问要求我们进一步探讨投资与各个产业国内生产总值(GDP)之间的关系,构建一个或多个投资理论模型,并评估这些模型的有效性。

2025-01-10 02:30:43 561

原创 2025华数杯数学建模B题—问题1解决全流程【解题思路+解题代码】

通过输入产出分析和优化模型,我们可以揭示中国主要产业之间的相互关系,并确定未来投资的优先级。这种方法不仅有助于推动经济增长,还能优化资源配置,确保可持续发展。在未来的政策制定过程中,重点投资于高技术产业和服务业,结合传统制造业的发展,将是实现经济平衡增长的关键。

2025-01-10 02:28:53 549

原创 2025华数杯数学建模B题【解题思路+python解题代码】

本次研究围绕中国未来工业发展中的投资策略展开,分析了如何通过合理的政府投资促进GDP增长、就业提升及社会可持续发展。通过五个问题的分析与模型建立,我们深入探讨了各行业间的相互关系、投资对经济的影响以及如何根据不同目标调整投资计划。

2025-01-10 02:22:38 440

原创 2025华数杯数学建模B题【解题思路+MATLAB解题代码】

本次研究围绕中国未来工业发展中的投资策略展开,分析了如何通过合理的政府投资促进GDP增长、就业提升及社会可持续发展。通过五个问题的分析与模型建立,我们深入探讨了各行业间的相互关系、投资对经济的影响以及如何根据不同目标调整投资计划。

2025-01-10 02:19:50 674

原创 2025华数杯数学建模B题完整论文讲解(解题核心代码+解题思路+建模过程)

本次研究围绕中国未来工业发展中的投资策略展开,分析了如何通过合理的政府投资促进GDP增长、就业提升及社会可持续发展。通过五个问题的分析与模型建立,我们深入探讨了各行业间的相互关系、投资对经济的影响以及如何根据不同目标调整投资计划。

2025-01-10 02:16:43 498

原创 2025华数杯数学建模A题完整论文讲解(解题核心代码+解题思路+建模过程)

在游泳比赛中,合理安排速度是运动员取得最佳成绩的重要因素。通过对游泳运动员的比赛速度进行建模分析,可以帮助他们科学分配体力、维持最佳竞技状态,从而获得更好的成绩。针对自由泳比赛,我们需要探讨如何合理安排速度以实现最佳结果,并分析不同距离(50米、100米、200米)比赛中的差异。

2025-01-10 02:15:06 603

原创 YOLOv8推理性能研究FPS与平均推理时间在科学应用中的评估与优化

本文详细介绍了如何使用训练好的YOLOv8模型,计算FPS(每秒帧数)和推理每张图片的平均时间(Average Inference Time, AIT),并探讨了如何通过优化模型和硬件,进一步提高推理效率。

2025-01-09 14:00:00 529

原创 RFAHead结合超分辨率与注意力机制提升YOLOv8在目标检测与姿态估计中的表现

本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!

2025-01-09 11:30:00 579

原创 基于Roboflow平台的数据集管理与格式转换YOLOv8训练的高效数据准备流程

Roboflow是一个数据集管理与增强平台,提供了大量免费的公共数据集,并支持各种数据格式的导入、处理与导出。它的特点在于简单易用,且能够将上传的数据集自动转换成常见的目标检测格式,如YOLO、VOC、COCO等,并且支持数据增强操作。通过Roboflow,开发者可以节省数据预处理的时间,专注于模型训练和优化。通过本教程,我们学习了如何使用Roboflow平台获取和处理数据集,并将其导出为YOLO、VOC、COCO和CSV等格式,适应不同任务和需求。

2025-01-08 18:15:00 1027

原创 基于Roboflow平台的数据集导出与YOLOv8目标检测训练实战

Roboflow 是一个专为计算机视觉任务而设计的数据集管理平台,它提供了多种功能,包括数据集的标注、数据增强、格式转换等。它支持导出多种主流格式,如VOCCOCOYOLOCSV等,极大地简化了数据集的处理过程。如果你需要进行更加个性化的增强,可以使用 Python 中的图像处理库(如 OpenCV 或 Albumentations)自定义增强策略。这对于特定场景下的目标检测非常有用。例如,使用import cv2])本文详细介绍了如何使用Roboflow。

2025-01-08 15:00:00 579

原创 RepHead一种重参数化检测头用于提升YOLOv8在困难样本上的检测性能

在目标检测任务中,困难样本通常是指那些由于特殊背景、遮挡、低分辨率或极度小物体等因素,导致模型难以识别的样本。这类样本对传统YOLO系列模型的影响较大,常常造成漏检或误检。重参数化(Reparameterization)是一种深度学习中常用的技术,旨在通过对网络参数的变换,使得模型在训练过程中能够更加灵活地适应不同的数据特征。通过对原始网络结构的参数进行重新表达,能够引导模型在训练过程中学习到更加有效的特征。本文详细介绍了YOLOv8的改进——RepHead检测头,并深入分析了它在解决困难样本检测中的应用。

2025-01-08 10:00:00 730

原创 超轻量动态上采样算子DySample的设计与实现针对YOLOv8的性能提升

YOLOv8(You Only Look Once Version 8)作为YOLO系列模型的最新版本,延续了高效、准确的目标检测优势。其基础结构包含了骨干网络(Backbone)、检测头(Head)、以及特征融合层(Neck)。在特征融合阶段,YOLOv8需要对不同尺度的特征图进行上采样,以便将低分辨率的特征与高分辨率的特征进行融合。传统的上采样操作多使用插值(如双线性插值)或固定卷积,而这些方法可能无法很好地适应复杂的上下文信息。

2025-01-07 13:00:00 670

原创 提升YOLOv8检测精度的边界框损失函数Focaler-IoU与InnerFocalerIoU的应用与效果

YOLOv8是一种常用的实时目标检测模型,基于CNN(卷积神经网络)结构并结合了一些改进技术以提高检测精度和速度。YOLOv8的核心在于边界框的预测和分类,而准确的边界框预测是提高模型整体性能的关键因素之一。在传统的IoU损失基础上,Focaler-IoU和InnerFocalerIoU进一步聚焦于边界框的边缘区域,通过调整损失权重,更好地关注难以检测的边界框,提高模型的鲁棒性和准确性。# 计算IoU# 计算Focaler-IoU损失在这里,我们定义了。

2025-01-07 12:15:00 707

原创 基于YOLOv8的密度热力图生成与动态视频热力图可视化技术

在目标检测领域中,YOLO系列模型凭借其高速高效的检测能力而受到广泛欢迎。YOLOv8作为最新的改进版本,性能更优,在实时检测任务中得到了广泛应用。传统的目标检测模型通常提供边界框信息,但缺乏对目标密度和分布的可视化手段。密度热力图和视频热力图的引入,能够提供更直观的检测信息。通过调整热力图的颜色映射,我们可以使高密度区域更加醒目。常用的颜色映射包括和,可以根据不同场景选择合适的配色方案。以下示例将采用生成叠加效果更好的热力图。

2025-01-06 18:30:00 512

原创 通过反向残差块网络EMO减少YOLOv8计算量的改进方案

反向残差块网络EMO是一种轻量级CNN架构模块,旨在降低主干网络的计算量,并保持高效的特征提取能力。它的主要思想是通过设计轻量化残差结构,减少参数量和计算量。EMO的结构与传统的残差块有所不同,它减少了对高维度特征的依赖。YOLOv8采用模块化设计,通过主干和检测头的组合进行特征提取与目标检测。我们主要关注主干的特征提取部分,将其替换为轻量化的EMO模块。首先,定义一个轻量级的EMO模块,该模块包含深度可分离卷积和反向残差结构。

2025-01-06 15:45:00 1299 1

原创 基于Grad-CAM的YOLOv8热力图生成与应用-从自定义模型到多场景实验

YOLOv8 作为 YOLO 系列的最新版本,具有更高的准确性和实时性能。然而,模型输出仅提供了最终的检测结果,对于研究者或工程师来说,理解模型的内部工作原理和各层的响应情况更具价值。本文将介绍如何在 YOLOv8 中生成可视化热力图,支持自定义模型、置信度选择等功能,通过热力图的可视化更深入地了解模型的特征提取能力和检测边界。YOLOv8是一种先进的实时物体检测模型,其在效率和准确率上实现了平衡。本文旨在为YOLOv8引入热力图可视化工具,用于展示模型对不同区域的响应强度。

2025-01-06 09:15:00 1501

原创 YOLOv8的特征融合创新-MFDS-DETR结构与HS-FPN在参数优化中的应用

在YOLOv8的Neck部分,我们将标准的FPN替换为基于MFDS-DETR的HS-FPN层。MFDS-DETR是一个多尺度解码器,专注于减少特征维度并聚焦于目标特征提取,同时可以减少参数量。HS-FPN进一步融合多层次的空间特征,通过降维操作,避免过多卷积运算,从而降低了模型的计算复杂度。MFDS-DETR主要由一个多尺度解码器(Multi-Scale Decoder)和动态注意力模块(Dynamic Attention)组成。

2025-01-05 18:30:00 1320 1

原创 第一届华数杯A题—带相变材料的低温防护服御寒仿真模拟【原创-获奖文章完整优秀题解】

优化问题求解的核心在于选择合适的算法。梯度下降法:适用于光滑的非线性优化问题,依赖目标函数的梯度信息来进行搜索。线性规划法(Simplex法):适用于线性优化问题,利用单纯形算法进行求解。整数规划法:适用于决策变量需要为整数的优化问题,如运输问题、排程问题等。遗传算法:适用于具有复杂约束的非线性优化问题,能够在大规模搜索空间中找到全局最优解。

2025-01-05 17:29:59 960

原创 第一届华数杯A题—低温防护服御寒仿真模拟【原创-获奖文章完整优秀题解】

数学建模是将现实问题转化为数学形式,并通过数学工具分析、求解问题的过程。它广泛应用于经济学、工程学、生物学、社会学等多个领域。问题定义:明确问题的背景和目标,识别出关键变量和关系。假设建立:对实际问题作出简化假设,以便进行建模。模型构建:根据问题的特性,选择合适的数学工具(如微积分、线性代数、概率统计等)建立模型。求解与分析:利用数学工具对模型进行求解,并分析结果。模型验证与优化:对模型进行验证,必要时进行优化,以提高模型的准确性和有效性。

2025-01-05 17:19:56 582

原创 第一届华数杯A题—带相变材料的低温防护服御寒效果研究【独家获奖完整优秀题解】

集成学习是指通过组合多个基础模型来提升整体模型的预测能力。它的核心思想是通过“弱学习者”组合成一个“强学习者”。Bagging:通过对数据集进行自助采样(Bootstrap)来训练多个模型,并对其预测结果进行平均或投票。Boosting:通过顺序训练多个模型,每个模型在训练过程中都对前一个模型的错误做出修正。Stacking:通过训练多个不同的模型,并用另一个模型对这些模型的预测结果进行合成。数学建模涉及多个环节,从数据预处理、模型构建到优化调参,每一个环节都不可忽视。

2025-01-05 17:01:54 150

原创 基于HetConv与Dual策略的YOLOv8轻量化设计-CSPHet结构的优化与实现

在计算机视觉中,YOLOv8作为目标检测领域的最新版本,通过引入多种改进来提升检测精度和速度。然而,提升精度和保持实时性能往往需要更多参数与计算量。本文提出一种结合Dual思想与HetConv的新型轻量化结构,称为CSPHet。CSPHet能够在保持YOLOv8检测精度的基础上有效减少约70万参数量,实现模型的轻量化和速度的提升。HetConv(Heterogeneous Convolution)是一种混合卷积技术,通过同时使用1x1、3x3等不同大小的卷积核,来捕捉不同尺度的特征。

2025-01-05 12:30:00 817

原创 YOLOv8模型参数优化-CSPPC结构通过PartialConv实现计算效率提升

YOLOv8 是 YOLO 系列的最新版本,通过使用改进的检测头和高效的卷积模块,实现了高效的目标检测。然而,YOLOv8的参数量较大,对一些嵌入式设备或需要高效推理的应用而言依然存在一定的负担。为了进一步优化YOLOv8的性能,我们将引入CSPPC结构,借助轻量化的PartialConv,以减少模型的参数量。PartialConv是一种轻量化的卷积操作,通过选择性地对输入特征图的部分通道进行卷积操作,可以显著降低计算量。

2025-01-05 09:00:00 672

原创 基于DualConv的轻量化C2f模块-YOLOv8的卷积优化与加速方案

YOLOv8引入了C2f模块(Cross-Stage Partial Structure with 2 Convolutional Operations),主要通过多个卷积操作实现特征提取,保证了模型在检测任务中的精度。但C2f模块中仍包含较多的卷积层,导致参数量和计算量相对较高。因此,对C2f模块进行轻量化改进成为我们优化的主要目标。

2025-01-04 00:37:30 729 4

原创 基于FASFFHead的YOLOv8改进-增强小目标检测能力的创新方法

本文介绍了FASFFHead(辅助特征融合检测头)的设计与实现,旨在提升YOLOv8在复杂场景和小目标检测中的性能。通过引入辅助特征层和特征选择模块,FASFFHead显著增强了模型对不同尺度目标的检测能力,实验结果表明在多个应用场景中都有明显的性能提升。在交通监控、无人机视角和工业缺陷检测等实际应用中,FASFFHead展示了优异的表现,尤其在小目标和复杂背景下的鲁棒性。为确保模型在实时场景中的应用,本文还探讨了模型轻量化、混合精度训练和硬件加速等优化策略。

2025-01-04 00:36:46 955

原创 全面解析 HarmonyOS NEXT(5.0):从零构建高效登录页面

自主可控:HarmonyOS NEXT是华为自主研发的操作系统,实现了技术的自主可控,为用户和开发者提供了更多的自由度和选择空间。安装包小:通过深度优化系统架构,HarmonyOS NEXT实现了安装包体积的显著缩小,使得用户能够更快速地下载和安装系统。运行速度快:系统经过优化后,运行速度得到大幅提升,为用户提供了更加流畅的操作体验。系统简洁精致:HarmonyOS NEXT的界面设计简洁大方,动效符合直觉,使得用户能够轻松上手并享受愉悦的使用体验。

2024-12-30 09:23:04 907 5

原创 优化YOLOv8目标检测性能的创新损失函数-Quality Focal Loss(QFL)的应用与改进【YOLOv8】

YOLOv8在YOLO系列中进一步优化了模型的结构和性能,采用了新的特征提取网络和自适应的anchor-free设计。这些改进使得YOLOv8在速度和精度上有了显著提升,但对于高质量的框定位和分类仍然存在挑战,尤其是一些复杂背景下的小物体检测和遮挡目标的识别问题。Quality Focal Loss 的核心思想是根据样本的质量分数调整损失。其数学定义如下:( p ) 是模型预测的置信度。( q ) 是真实标签的质量分数(通常为IoU值)。

2024-12-22 13:45:00 786 3

原创 基于YOLOv8的实时过线统计系统设计与优化-人车过线检测实战【YOLOv8】

YOLOv8作为YOLO系列的最新版本,具备较高的检测速度与精度。它采用新的网络架构,提升了检测精度和多场景适应性。YOLOv8适用于实时场景下的检测任务,并支持复杂场景中的目标跟踪与识别。本文利用YOLOv8对目标检测进行跟踪和统计。通过本次YOLOv8改进的实战项目,我们构建了一个高效、可扩展的过线统计系统,适用于多种场景下的目标检测和统计需求。文章从系统构建、模型选择、虚拟线设置、代码实现、目标跟踪等多个方面,详细介绍了如何基于YOLOv8实现人、车等目标的过线统计。

2024-12-22 11:30:00 699

原创 融合Retinex理论与Transformer的YOLOv8低光照目标检测增强方法【YOLOv8】

图像分解:将输入图像分解为光照成分和反射成分。光照估计:估计光照图以消除暗光区域。图像重建:将光照增强后的反射图像重建成最终图像。Retinexformer通过在Transformer中引入Retinex的图像增强思路,使得低光照图像的细节能够得到充分保留。本文提出了一种基于Retinexformer的低光照增强方法,用于改进YOLOv8模型在夜间和低光照环境下的目标检测性能。

2024-12-21 08:00:00 1079

原创 实时视频流中的目标计数与区域检测-基于YOLOv8的实现与分析【YOLOv8】

YOLOv8是YOLO系列的最新版本,它具有更高的检测精度和速度,适用于多种场景的目标检测。通过改进的检测头和更优化的神经网络架构,YOLOv8在保持实时检测能力的同时,大幅提升了目标识别的精确度。轻量化:减少了模型参数,提升了推理速度。检测精度高:支持更复杂的多目标检测场景。适应多平台部署:支持嵌入式、服务器端和云端部署。本文深入探讨了如何利用YOLOv8进行视频中区域内目标的统计计数,并结合多个实战实例展示了从基础检测到高级优化的完整过程。

2024-12-20 11:30:00 786

原创 融合华为VanillaNet与BiFPN的YOLOv8改进-提升精度与效率的突破性研究【YOLOv8】

速度与精度的平衡:YOLOv8 采用了一些更高效的网络结构,使得其在保证高检测精度的同时拥有较快的推理速度。模块化设计:支持多种检测头和颈部结构的替换与调整,具备较强的可扩展性。集成改进:相较于 YOLOv5 和 YOLOv7,YOLOv8 在架构上引入了一些高级特性如 CSPDarkNet 和 SPPF 模块。尽管 YOLOv8 表现优秀,但在处理更复杂的场景和数据集时,依然存在一定的局限性。因此,通过对其结构进行合理的改进,可以进一步提升其性能。

2024-12-20 10:45:00 1655

原创 集成GhostNetv2优化YOLOv8-移动设备上的计算量与延迟减少【YOLOv8】

YOLOv8作为YOLO系列的最新版本,具备较强的目标检测能力,但其计算量仍较高,在移动端设备上可能面临性能瓶颈。为此,我们可以采用一种高效的特征提取架构,降低模型的参数量和计算量。GhostNetv2是华为提出的一种轻量级网络架构,针对移动端设计。该模型通过“Ghost模块”来减少传统卷积操作中的计算冗余,保持相似的特征表示效果。这些模块在减少卷积操作的同时,利用少量操作生成更多特征,显著提升了模型的计算效率。首先实现Ghost模块,用于生成额外的特征图。

2024-12-19 12:30:00 979 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://blog.csdn.net/mrdeam

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy