Content-Length: 163885 | pFad | https://blog.csdn.net/qq_42860591/article/details/106590083

基于OpenCV3.4的人脸识别_opencv3.4 训练人脸识别数据-CSDN博客

基于OpenCV3.4的人脸识别

本文介绍了如何使用OpenCV3.4进行人脸识别。首先,文章讲解了前期准备,包括创建dataset和trainer文件夹来存放和训练人脸。接着,详细阐述了录入人脸的代码实现,以及如何通过摄像头捕获并训练人脸。最后,提到了检测已训练人脸的代码段。OpenCV自带的人脸模型资源也在文中给出。
摘要由CSDN通过智能技术生成

我们采用opencv自带的人脸模型
也可以自己创立模型可参考:
自创人脸模型

一、前期准备:

1.建立 一个文件夹dataset,用来存放人脸
2.建立 一个文件夹trainer,用来训练人脸,
在这里插入图片描述
OpenCV自带的人脸模型:
链接:https://pan.baidu.com/s/1y64L9pwmyBUpIOPtNJe3BA
提取码:p85p

二、编写代码:

1.编写录入人脸代码:

# -*- coding: utf-8 -*-
import cv2
import os

cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video width
cam.set(4, 480) # set video height

face_detector = cv2.CascadeClassifier('G:/haarcascade_frontalface_default.xml')

# For each person, enter one numeric face id
face_id = input('\n enter user id end press <return> ==>  ')

print("\n [INFO] Initializing face capture. Look the camera and wait ...")
# Initialize individual sampling face count
count = 0

while(True):
    ret, img = cam.read()
    img = cv2.flip(img, 1) # flip video image vertically
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_detector.detectMultiScale(gray, 1.5, 2)

    for (x,y,w,h) in faces:
        cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)
        count += 1

        # Save the captured image into the datasets folder
        cv2.imwrite("dataset/User." 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://blog.csdn.net/qq_42860591/article/details/106590083

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy