Content-Length: 334088 | pFad | https://dlmf.nist.gov/./../././bib/.././././.././././../././././././bib/H#bib3029

DLMF: Bibliography H ‣ Bibliography
About the Project
Bibliography

Bibliography H

  • L. Habsieger (1986) La q-conjecture de Macdonald-Morris pour G2. C. R. Acad. Sci. Paris Sér. I Math. 303 (6), pp. 211–213 (French).
  • L. Habsieger (1988) Une q-intégrale de Selberg et Askey. SIAM J. Math. Anal. 19 (6), pp. 1475–1489.
  • J. Hadamard (1896) Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques. Bull. Soc. Math. France 24, pp. 199–220 (French).
  • P. I. Hadži (1968) Computation of certain integrals that contain a probability function. Bul. Akad. Štiince RSS Moldoven 1968 (2), pp. 81–104. (errata insert) (Russian).
  • P. I. Hadži (1969) Certain integrals that contain a probability function and degenerate hypergeometric functions. Bul. Akad. S̆tiince RSS Moldoven 1969 (2), pp. 40–47 (Russian).
  • P. I. Hadži (1970) Some integrals that contain a probability function and hypergeometric functions. Bul. Akad. Štiince RSS Moldoven 1970 (1), pp. 49–62 (Russian).
  • P. I. Hadži (1972) Certain sums that contain cylindrical functions. Bul. Akad. Štiince RSS Moldoven. 1972 (3), pp. 75–77, 94 (Russian).
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • P. I. Hadži (1975a) Certain integrals that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1975 (2), pp. 86–88, 95 (Russian).
  • P. I. Hadži (1975b) Integrals containing the Fresnel functions S(x) and C(x). Bul. Akad. Štiince RSS Moldoven. 1975 (3), pp. 48–60, 93 (Russian).
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • E. Hahn (1980) Asymptotik bei Jacobi-Polynomen und Jacobi-Funktionen. Math. Z. 171 (3), pp. 201–226 (German).
  • W. Hahn (1949) Über Orthogonalpolynome, die q-Differenzengleichungen genügen. Math. Nachr. 2, pp. 4–34 (German).
  • E. Hairer, S. P. Nørsett, and G. Wanner (1993) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 8, Springer-Verlag, Berlin.
  • E. Hairer, S. P. Nørsett, and G. Wanner (2000) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer-Verlag, Berlin.
  • E. Hairer and G. Wanner (1996) Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 14, Springer-Verlag, Berlin.
  • N. Hale and A. Townsend (2016) A fast FFT-based discrete Legendre transform. IMA J. Numer. Anal. 36 (4), pp. 1670–1684.
  • B. C. Hall (2013) Quantum theory for mathematicians. Graduate Texts in Mathematics, Vol. 267, Springer, New York.
  • B. Hall (2015) Lie groups, Lie algebras, and representations. Second edition, Graduate Texts in Mathematics, Vol. 222, Springer, Cham.
  • R. L. Hall, N. Saad, and K. D. Sen (2010) Soft-core Coulomb potentials and Heun’s differential equation. J. Math. Phys. 51 (2), pp. Art. ID 022107, 19 pages.
  • M. H. Halley, D. Delande, and K. T. Taylor (1993) The combination of R-matrix and complex coordinate methods: Application to the diamagnetic Rydberg spectra of Ba and Sr. J. Phys. B 26 (12), pp. 1775–1790.
  • A. J. S. Hamilton (2001) Formulae for growth factors in expanding universes containing matter and a cosmological constant. Monthly Notices Roy. Astronom. Soc. 322 (2), pp. 419–425.
  • J. Hammack, D. McCallister, N. Scheffner, and H. Segur (1995) Two-dimensional periodic waves in shallow water. II. Asymmetric waves. J. Fluid Mech. 285, pp. 95–122.
  • J. Hammack, N. Scheffner, and H. Segur (1989) Two-dimensional periodic waves in shallow water. J. Fluid Mech. 209, pp. 567–589.
  • H. Hancock (1958) Elliptic Integrals. Dover Publications Inc., New York.
  • R. A. Handelsman and J. S. Lew (1970) Asymptotic expansion of Laplace transforms near the origen. SIAM J. Math. Anal. 1 (1), pp. 118–130.
  • R. A. Handelsman and J. S. Lew (1971) Asymptotic expansion of a class of integral transforms with algebraically dominated kernels. J. Math. Anal. Appl. 35 (2), pp. 405–433.
  • S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King (1970) Tables of Radial Spheroidal Wave Functions, Vols. 1-3, Prolate, m=0,1,2; Vols. 4-6, Oblate, m=0,1,2. Technical report Naval Research Laboratory, Washington, D.C..
  • E. R. Hansen (1975) A Table of Series and Products. Prentice-Hall, Englewood Cliffs, N.J..
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • J. Happel and H. Brenner (1973) Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. 2nd edition, Noordhoff International Publishing, Leyden.
  • G. H. Hardy, J. E. Littlewood, and G. Pólya (1967) Inequalities. 2nd edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge.
  • G. H. Hardy and J. E. Littlewood (1925) Some problems of “Partitio Numerorum” (VI): Further researches in Waring’s Problem. Math. Z. 23, pp. 1–37.
  • G. H. Hardy and S. Ramanujan (1918) Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. (2) 17, pp. 75–115.
  • G. H. Hardy and E. M. Wright (1979) An Introduction to the Theory of Numbers. 5th edition, The Clarendon Press Oxford University Press, New York-Oxford.
  • G. H. Hardy (1912) Note on Dr. Vacca’s series for γ. Quart. J. Math. 43, pp. 215–216.
  • G. H. Hardy (1940) Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work. Cambridge University Press, Cambridge, England.
  • G. H. Hardy (1949) Divergent Series. Clarendon Press, Oxford.
  • G. H. Hardy (1952) A Course of Pure Mathematics. 10th edition, Cambridge University Press.
  • B. A. Hargrave and B. D. Sleeman (1977) Lamé polynomials of large order. SIAM J. Math. Anal. 8 (5), pp. 800–842.
  • B. A. Hargrave (1978) High frequency solutions of the delta wing equations. Proc. Roy. Soc. Edinburgh Sect. A 81 (3-4), pp. 299–316.
  • F. E. Harris (2000) Spherical Bessel expansions of sine, cosine, and exponential integrals. Appl. Numer. Math. 34 (1), pp. 95–98.
  • F. E. Harris (2002) Analytic evaluation of two-center STO electron repulsion integrals via ellipsoidal expansion. Internat. J. Quantum Chem. 88 (6), pp. 701–734.
  • J. F. Hart, E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. R. Rice, H. G. Thacher, Jr., and C. Witzgall (1968) Computer Approximations. SIAM Ser. in Appl. Math., John Wiley & Sons Inc., New York.
  • D. R. Hartree (1936) Some properties and applications of the repeated integrals of the error function. Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.
  • Harvard University (1945) Tables of the Modified Hankel Functions of Order One-Third and of their Derivatives. Harvard University Press, Cambridge, MA.
  • A. Hasegawa (1989) Optical Solitons in Fibers. Springer-Verlag, Berlin, Germany.
  • C. B. Haselgrove and J. C. P. Miller (1960) Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York.
  • C. Hastings (1955) Approximations for Digital Computers. Princeton University Press, Princeton, N.J..
  • S. P. Hastings and J. B. McLeod (1980) A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rational Mech. Anal. 73 (1), pp. 31–51.
  • H. J. Haubold, A. M. Mathai, and R. K. Saxena (2011) Mittag-Leffler functions and their applications. J. Appl. Math. 2011, pp. Art. ID 298628, 51 pages.
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ(2m+1). Commun. Appl. Anal. 1 (1), pp. 15–32.
  • M. Hauss (1998) A Boole-type Formula involving Conjugate Euler Polynomials. In Charlemagne and his Heritage. 1200 Years of Civilization and Science in Europe, Vol. 2 (Aachen, 1995), P.L. Butzer, H. Th. Jongen, and W. Oberschelp (Eds.), pp. 361–375.
  • B. Hayes (2009) The higher arithmetic. American Scientist 97, pp. 364–368.
  • V. B. Headley and V. K. Barwell (1975) On the distribution of the zeros of generalized Airy functions. Math. Comp. 29 (131), pp. 863–877.
  • G. J. Heckman (1991) An elementary approach to the hypergeometric shift operators of Opdam. Invent. Math. 103 (2), pp. 341–350.
  • M. Heil (1995) Numerical Tools for the Study of Finite Gap Solutions of Integrable Systems. Ph.D. Thesis, Technischen Universität Berlin.
  • T. Helgaker, P. Jørgensen, and J. Olsen (2012) Molecular Electronic-Structure Theory. John Wiley & Sons, New York.
  • E. J. Heller, W. P. Reinhardt, and H. A. Yamani (1973) On an “equivalent quadrature” calculation of matrix elements of (zp2/2m)1 using an L2 expansion technique. J. Comput. Phys. 13, pp. 536–550.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./../././bib/.././././.././././../././././././bib/H#bib3029

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy