Improved Automated Detection of Subpixel-Scale Inundation—Revised Dynamic Surface Water Extent (DSWE) Partial Surface Water Tests
Abstract
:1. Introduction
Goal and Objectives
2. Methods
2.1. Spectral Mixture Modeling
2.1.1. Input Spectral Data Development
2.1.2. Water Endmember
2.1.3. Soil Spectra
2.1.4. Vegetation Endmembers
2.1.5. Snow/Ice Spectral Endmember
2.2. DSWE partial surface water test development
2.3. DSWE PSW v2 Evaluation
2.3.1. DSWE PSW v2 Point-based, Quantitative Assessment
2.3.2. Visual Evaluation
3. Results and Discussion
3.1. Spectral Mixing Simulation
3.2. Everglades Point-based Analyses
3.3. Visual Inspection
4. Conclusions and Future Research
Data Availability
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a strong future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Australia, G. Water Observations from Space. Available online: http://www.ga.gov.au/scientific-topics/hazards/flood/wofs (accessed on 5 September 2018).
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.W. Efficient Wetland Surface Water Detection and Monitoring via Landsat: Comparison with in situ Data from the Everglades Depth Estimation Network. Remote Sens. 2015, 7, 12503–12538. [Google Scholar] [CrossRef] [Green Version]
- Devries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Creed, I.F.; Carroll, M.L. Automated Quantification of Surface Water Inundation in Wetlands Using Optical Satellite Imagery. Remote Sens. 2017, 9, 807. [Google Scholar] [CrossRef]
- Carroll, M.L.; Loboda, T.V. Multi-Decadal Surface Water Dynamics in North American Tundra. Remote Sens. 2017, 9, 497. [Google Scholar] [CrossRef]
- Bjerklie, D.M.; Birkett, C.M.; Jones, J.W.; Carabajal, C.; Rover, J.A.; Fulton, J.W.; Garambois, P.-A. Satellite remote sensing estimation of river discharge: Application to the Yukon River Alaska. J. Hydrol. 2018, 561, 1000–1018. [Google Scholar] [CrossRef]
- Huang, W.; Devries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Creed, I.F.; Carroll, M.L. Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sens. 2018, 10, 797. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetlands Ecol. Manage. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Rover, J.; Wylie, B.K.; Ji, L. A self-trained classification technique for producing 30 m percent-water maps from Landsat data. Int. J. Remote Sens. 2010, 31, 2197–2203. [Google Scholar] [CrossRef]
- Frohn, R.C.; D’Amico, E.; Lane, C.; Autrey, B.; Rhodus, J.; Liu, H. Multi-temporal sub-pixel landsat ETM+ classification of isolated wetlands in cuyahoga county, OHIO, USA. Wetlands 2012, 32, 289–299. [Google Scholar] [CrossRef]
- Huang, C.; Peng, Y.; Lang, M.; Yeo, I.-Y.; Mccarty, G. Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sens. Environ. 2014, 141, 231–242. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site. J. Geophys. Res. 1986, 91, 8098. [Google Scholar] [CrossRef]
- Shanmugam, P.; Ahn, Y.-H.; Sanjeevi, S. A comparison of the classification of wetland characteristics by linear spectral mixture modelling and traditional hard classifiers on multispectral remotely sensed imagery in southern India. Ecol. Model. 2006, 194, 379–394. [Google Scholar] [CrossRef]
- Melendez-Pastor, I.; Navarro-Pedreño, J.; Gómez, I.; Koch, M. Detecting drought induced environmental changes in a Mediterranean wetland by remote sensing. Appl. Geogr. 2010, 30, 254–262. [Google Scholar] [CrossRef]
- Schmid, T.; Gumuzzio, J.; Koch, M. Multisensor approach to determine changes of wetland characteristics in semiarid environments (central Spain). IEEE Trans. Geosci. Remote Sens. 2005, 43, 2516–2525. [Google Scholar] [CrossRef]
- Cui, T.; Gong, Z.; Zhao, W.; Zhao, Y.; Lin, C. Research on estimating wetland vegetation abundance based on spectral mixture analysis with different endmember model: a case study in Wild Duck Lake wetland, Beijing. Acta Ecol. Sin. 2013, 33, 1160–1171. [Google Scholar]
- He, M.; Zhao, B.; Ouyang, Z.; Yan, Y.; Li, B. Linear spectral mixture analysis of Landsat TM data for monitoring invasive exotic plants in estuarine wetlands. Int. J. Remote Sens. 2010, 31, 4319–4333. [Google Scholar] [CrossRef]
- Rogers, A.S.; Kearney, M.S. Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. Int. J. Remote Sens. 2004, 25, 2317–2335. [Google Scholar] [CrossRef]
- Halabisky, M.; Moskal, L.M.; Gillespie, A.; Hannam, M. Reconstructing semi-arid wetland surface water dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984–2011). Remote Sens. Environ. 2016, 177, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Zhao, W.; Li, A.; Bian, J.; Zhang, Z. Subpixel Inundation Mapping Using Landsat-8 OLI and UAV Data for a Wetland Region on the Zoige Plateau, China. Remote Sens. 2017, 9, 31. [Google Scholar] [CrossRef]
- Robertson, L.D.; King, D.J.; Davies, C. Assessing Land Cover Change and Anthropogenic Disturbance in Wetlands Using Vegetation Fractions Derived from Landsat 5 TM Imagery (1984–2010). Wetlands 2015, 35, 1077–1091. [Google Scholar] [CrossRef]
- Brivio, P.A.; Zilioli, E. Assessing wetland changes in the venice lagoon by means of satellite remote sensing data. J. Coast. Conserv. 1996, 2, 23–32. [Google Scholar] [CrossRef]
- Sun, W.; Du, B.; Xiong, S. Quantifying Sub-Pixel Surface Water Coverage in Urban Environments Using Low-Albedo Fraction from Landsat Imagery. Remote Sens. 2017, 9, 428. [Google Scholar] [CrossRef]
- Xiong, L.; Deng, R.; Li, J.; Liu, X.; Qin, Y.; Liang, Y.; Liu, Y. Subpixel Surface Water Extraction (SSWE) Using Landsat 8 OLI Data. Water 2018, 10, 653. [Google Scholar] [CrossRef]
- Adams, J.B.; Gillespie, A.R. Remote Sensing of Landscapes with Spectral Images: A Physical Modeling Approach; Cambridge University Press: New York, NY, USA, 2006; pp. 1–362. [Google Scholar]
- Shi, C.; Wang, L. Incorporating spatial information in spectral unmixing: A review. Remote Sens. Environ. 2014, 149, 70–87. [Google Scholar] [CrossRef]
- Elmore, A.J.; Mustard, J.F.; Manning, S.J.; Lobell, D.B. Quantifying Vegetation Change in Semiarid Environments: Precision and Accuracy of Spectral Mixture Analysis and the Normalized Difference Vegetation Index. Remote Sens. Environ. 2000, 73, 87–102. [Google Scholar] [CrossRef]
- Small, C. The Landsat ETM+ spectral mixing space. Remote Sens. Environ. 2004, 93, 1–17. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Jones, J.W. Remote Sensing of Vegetation Pattern and Condition to Monitor Changes in Everglades Biogeochemistry. Crit. Rev. Environ. Sci. Technol. 2011, 41, 64–91. [Google Scholar] [CrossRef]
- Sousa, D.; Small, C. Global cross-calibration of Landsat spectral mixture models. Remote Sens. Environ. 2017, 192, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Baldridge, A.; Hook, S.; Grove, C.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Small, C.; Milesi, C. Multi-scale standardized spectral mixture models. Remote Sens. Environ. 2013, 136, 442–454. [Google Scholar] [CrossRef]
- USGS. LANDSAT 4-7 Surface Reflectance (LEDAPS) Product; USGS: Sioux Falls, SD, USA, 2018; p. 38.
- USGS. LANDSAT 8 Surface Reflectance Code (LASRC) Product; USGS: Sioux Falls, SD, USA, 2018; p. 40.
- Pearlstine, L.; Smith, S.; Brandt, L.; Allen, C.; Kitchens, W.; Stenberg, J. Assessing state-wide biodiversity in the Florida Gap analysis project. J. Environ. Manage. 2002, 66, 127–144. [Google Scholar] [CrossRef] [Green Version]
- Gergely, K.J.; McKerrow, A. Terrestrial ecosystems: national inventory of vegetation and land use; US Geological Survey: Sioux Falls, SD, USA, 2013.
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- USGS. What are Landsat7 SLC-off Masks? Available online: https://landsat.usgs.gov/what-are-landsat-7-slc-gap-mask-files (accessed on 2 October 2018).
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7, in Data Series 2017; U.S. Geological Survey Data Series 1035; U.S. Geological Survey: Reston, VA, USA, 2017; p. 61.
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436; USDA: Washington, DC, USA, 1999.
- Jones, J.W.; Price, S.D. Conceptual Design of the Everglades Depth Estimation Network (EDEN) Grid; U.S. Geological Survey: Reston, VA, USA, 2007; p. 20.
- Telis, P. The Everglades Depth Estimation Network (EDEN) for Support of Ecological and Biological Assessments; U.S. Geological Survey: Reston, VA, USA, 2006.
- USGS. South Florida Information Access. 2018. Available online: http://sofia.usgs.gov (accessed on 5 September 2018).
- USGS. EDEN Gage Ancillary Data Collection Protocol. 2015. Available online: http://sofia.usgs.gov/eden/geprotocol.php (accessed on 5 May 2015).
- Flood, N. Continuity of reflectance data between landsat-7 ETM+ and landsat-8 OLI, for both top-of-atmosphere and surface reflectance: A study in the australian landscape. Remote Sens. 2014, 6, 7952–7970. [Google Scholar] [CrossRef]
- Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Remote Sens. 2014, 6, 12619–12638. [Google Scholar] [CrossRef] [Green Version]
- She, X.; Zhang, L.; Cen, Y.; Wu, T.; Huang, C.; Baig, M.H.A. Comparison of the Continuity of Vegetation Indices Derived from Landsat 8 OLI and Landsat 7 ETM+ Data among Different Vegetation Types. Remote Sens. 2015, 7, 13485–13506. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Jiang, L.; Feng, Z. Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) Sensors. Remote Sens. 2014, 6, 310–329. [Google Scholar] [CrossRef]
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; Nachtergaele, F., Ed.; FAO: Rome, Italy, 2015; p. 648. [Google Scholar]
- Kim, J.-W.; Lu, Z.; Jones, J.W.; Shum, C.; Lee, H.; Jia, Y. Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter. Remote Sens. Environ. 2014, 150, 66–81. [Google Scholar] [CrossRef]
- Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. SAR-based detection of flooded vegetation—A review of characteristics and approaches. Int. J. Remote Sens. 2018, 39, 2255–2293. [Google Scholar] [CrossRef]
- Johnson, W.C.; Millett, B.V.; Gilmanov, T.; Voldseth, R.A.; Guntenspergen, G.R.; Naugle, D.E. Vulnerability of Northern Prairie Wetlands to Climate Change. BioScience 2005, 55, 863. [Google Scholar] [CrossRef] [Green Version]
- Winter, T.C.; Rosenberry, D.O. Hydrology of Prairie Pothole Wetlands during Drought and Deluge: A 17-Year Study of the Cottonwood Lake Wetland Complex in North Dakota in the Perspective of Longer Term Measured and Proxy Hydrological Records. Clim. Change 1998, 40, 189–209. [Google Scholar] [CrossRef]
- Duarte, A. US Fish and Wildlife Habitat Conservation Planning Polygon; USFWS: Bend, OR, USA, 2018. [Google Scholar]
- USGS. USGS 14056500 Deschutes R BL Wickiup Res NR LA Pine, Oreg. 2018. Available online: https://waterdata.usgs.gov/or/nwis/nwismap/?site_no=14056500&agency_cd=USGS (accessed on 11 October 2018).
Description | Individual Spectra Name(s) | Group Abbreviation |
---|---|---|
Brown fine sandy loam | alfisol-haplustalf-coarse-87P3665 alfisol-haplustalf-coarse-87P3671 alfisol-haplustalf-coarse-87P3468 | Alfisol_Br |
Light yellowish brown interior dry gravelly loam | aridisol-calciorthid-coarse-79P1536 aridisol-calciorthid-coarse-84P3721 | Aridisol_LYBr |
White gypsum dune sand | entisol-torripsamment-coarse-0015 | Entisol_WGDS |
Dark brown fine sandy loam | inceptisol-cryumbrept-coarse-87P3855 inceptisol-haplumbrept-coarse-86P4561 inceptisol-haplumbrept-coarse-88P4699 | Inceptisol_Br2DBr |
Black Loam | mollisol-cryoboroll-coarse-85P4663 | Mollisol_Bl |
Very dark grayish brown loam | mollisol-cryoboroll-coarse-87P4453 | Mollisol_VDBGr |
Dark reddish brown organic-rich silty loam | spodosol-cryohumod-coarse-87P4264 | Spodisol_DRBr |
Brown to Dark Brown | utisol-hapludult-coarse-87P707 | Utisol_Br2DBr |
Cover Type | GAP Class | Image Identifiers | Sample Size |
---|---|---|---|
Herbaceous | |||
251: South Florida Sawgrass Marsh | LE70150422016128-SC20161205175103 | 85,748 | |
LC80150422016120-SC20160614212141 | |||
Mixed Forest | |||
64: Central Oak-Hardwood and Pine Forest | LE70160332015180-SC20161206113312 | 88,536 | |
LC80150332015181-SC20161206120414 | |||
Coniferous Forest | |||
250: Douglas Fir–Western Hemlock–Grand Fir Forest | LE70450302016210-SC20161212093139 | 3,440,256 | |
LC80460302016209-SC20161212095935 |
Individual Snow Spectrum Name |
---|
splib07a_Melting_snow_mSnw01a_ASDFRa_AREF |
splib07a_Melting_snow_mSnw03_ASDFRa_AREF |
splib07a_Melting_snow_mSnw04_ASDFRa_AREF |
splib07a_Melting_snow_mSnw05_ASDFRa_AREF |
splib07a_Melting_snow_mSnw08_ASDFRa_AREF |
2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
---|---|---|---|---|---|---|---|---|---|---|---|
1/12 | 1/30 | 1/1 | 1/20 | 1/23 | 1/25 | 5/4 | 1/31 | 1/18 | 10/3 | 2/8 | 11/10 |
2/13 | 3/3 | 1/17 | 2/21 | 3/11 | 2/10 | 5/20 | 7/10 | 2/3 | 10/19 | 6/16 | |
2/29 | 4/4 | 2/2 | 6/13 | 5/30 | 4/15 | 9/25 | 9/28 | 4/23 | |||
4/17 | 5/6 | 2/18 | 12/8 | 10/11 | |||||||
5/19 | 8/10 | 5/9 | |||||||||
6/20 | 8/26 | 8/29 | |||||||||
7/06 | 12/16 | 9/14 | |||||||||
9/24 | 12/3 | ||||||||||
10/26 | 12/19 | ||||||||||
Total by year | |||||||||||
9 | 7 | 9 | 3 | 4 | 3 | 4 | 3 | 3 | 2 | 2 | 1 |
v1 OA | v2 OA | OA Diff | OE Diff | N | |
---|---|---|---|---|---|
Mean | 0.73 | 0.77 | 0.04 | −0.11 | 108 |
Median | 0.73 | 0.77 | 0.03 | −0.11 | 117 |
Standard Deviation | 0.08 | 0.07 | 0.05 | −0.07 | 38 |
Minimum | 0.38 | 0.5 | −0.02 | −0.06 | 16 |
Maximum | 0.85 | 0.89 | 0.22 | −0.27 | 155 |
P-value | NA | NA | 0.01 | 0.009 | NA |
© 2019 by the U.S. Geological Survey (the work is in the public domain). Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, J.W. Improved Automated Detection of Subpixel-Scale Inundation—Revised Dynamic Surface Water Extent (DSWE) Partial Surface Water Tests. Remote Sens. 2019, 11, 374. https://doi.org/10.3390/rs11040374
Jones JW. Improved Automated Detection of Subpixel-Scale Inundation—Revised Dynamic Surface Water Extent (DSWE) Partial Surface Water Tests. Remote Sensing. 2019; 11(4):374. https://doi.org/10.3390/rs11040374
Chicago/Turabian StyleJones, John W. 2019. "Improved Automated Detection of Subpixel-Scale Inundation—Revised Dynamic Surface Water Extent (DSWE) Partial Surface Water Tests" Remote Sensing 11, no. 4: 374. https://doi.org/10.3390/rs11040374
APA StyleJones, J. W. (2019). Improved Automated Detection of Subpixel-Scale Inundation—Revised Dynamic Surface Water Extent (DSWE) Partial Surface Water Tests. Remote Sensing, 11(4), 374. https://doi.org/10.3390/rs11040374