Analyzing Gaps in Hurricane Rain Coverage to Inform Future Satellite Proposals
Abstract
:1. Introduction
2. Background
2.1. The Tropical Cyclone Environment
2.2. Proposed Satellites
3. Data and Methodology
3.1. NOAA Airborne Radars
3.1.1. NOAA WP-3D Lower Fuselage Radar
3.1.2. NOAA WP-3D Tail Doppler Radar
3.2. Estimating Rain Rates from NOAA Radar Backscatter
3.3. Rain-Free Footprint Application
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marks, F.D. Evolution of the Structure of Precipitation in Hurricane Allen (1980). Mon. Weather Rev. 1985, 113, 909–930. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.L.; Kummerow, C.D. The Remote Sensing of Clouds and Precipitation from Space: A Review. J. Atmos. Sci. 2007, 64, 3742–3765. [Google Scholar] [CrossRef]
- Holbach, H.M.; Uhlhorn, E.W.; Bourassa, M.A. Off-Nadir SFMR Brightness Temperature Measurements in High-Wind Conditions. J. Atmos. Ocean. Technol. 2018, 35, 1865–1879. [Google Scholar] [CrossRef]
- Lauknes, T.R. Rockslide Mapping in Norway by Means of Interferometric SAR Time Series Analysis. Ph.D. Thesis, University of Tromsø, Munin, Iceland, 18 March 2011. [Google Scholar]
- Bourassa, M.A.; Meissner, T.; Cerovecki, I.; Chang, P.S.; Dong, X.; De Chiara, G.; Donlon, C.; Dukhovskoy, D.S.; Elya, J.; Fore, A.; et al. Remotely Sensed Winds and Wind Stresses for Marine Forecasting and Ocean Modeling. Front. Mar. Sci. 2019, 6, 443. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, E.; Bourassa, M.A.; Chelton, D.; Farrar, J.T.; Long, D.; Perkovic-Martin, D.; Samelson, R. The Winds and Currents Mission Concept. Front. Mar. Sci. 2019, 6, 438. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space; The National Academies Press: Washington, DC, USA, 20 January 2019. [Google Scholar]
- Barnes, C.E.; Barnes, G.M. Eye and Eyewall Traits as Determined with the NOAA WP-3D Lower-Fuselage Radar. Mon. Weather Rev. 2014, 142, 3393–3417. [Google Scholar] [CrossRef]
- Willoughby, H.E.; Clos, J.A.; Shoreibah, M.G. Concentric Eye Walls, Secondary Wind Maxima, and The Evolution of the Hurricane vortex. J. Atmos. Sci. 1982, 39, 395–411. [Google Scholar] [CrossRef]
- Senn, H.V.; Hiser, H.W. On the Origin of Hurricane Spiral Rainbands. J. Meteorol. 1959, 16, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Kepert, J.D. The Boundary Layer Dynamics of Tropical Cyclone Rainbands. J. Atmos. Sci. 2018, 75, 3777–3795. [Google Scholar] [CrossRef]
- Barnes, G.M.; Zipser, E.J.; Jorgensen, D.; Marks, F., Jr. Mesoscale and Convective Structure of a Hurricane Rainband. J. Atmos. Sci. 1983, 40, 2125–2137. [Google Scholar] [CrossRef] [Green Version]
- Barnes, G.M.; Stossmeister, G.J. The Structure and Decay of a Rainband in Hurricane Irene (1981). Mon. Weather Rev. 1986, 114, 2590–2601. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; Farrar, J.T.; Molemaker, M.J.; McWilliams, J.C.; Gula, J. Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity. Prog. Oceanogr. 2018, 173, 256–350. [Google Scholar] [CrossRef]
- Ardhuin, F.; Brandt, P.; Gaultier, L.; Donlon, C.; Battaglia, A.; Boy, F.; Casal, T.; Chapron, B.; Collard, F.; Cravatte, S.; et al. SKIM, a Candidate Satellite Mission Exploring Global Ocean Currents and Waves. Front. Mar. Sci. 2019, 6, 209. [Google Scholar] [CrossRef] [Green Version]
- Draper, D.W.; Long, D. Evaluating the effect of rain on SeaWinds scatterometer measurements. J. Geophys. Res. Space Phys. 2004, 109, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, D.; Willis, P. A Z-R relationship for hurricanes. J. Appl. Meteorol. 1982, 21, 356–366. [Google Scholar] [CrossRef]
- Radar Lower Fuselage Sweep Format. Available online: https://www.aoml.noaa.gov/hrd/format/lfsweepfileformat.html (accessed on 21 March 2020).
- Reasor, P.D.; Montgomery, M.T.; Marks, F.D.; Gamache, J.F. Low-Wavenumber Structure and Evolution of the Hurricane Inner Core Observed by Airborne Dual-Doppler. Mon. Weather Rev. 2014, 128, 1653–1680. [Google Scholar] [CrossRef] [Green Version]
- Irma 2017 Radar Data. Available online: https://www.aoml.noaa.gov/hrd/Storm_pages/irma2017/radar.html (accessed on 29 March 2020).
- Awaka, J.; Le, M.; Chandrasekar, V.; Yoshida, N.; Higashiuwatoko, T.; Kubota, T.; Iguchi, T. Rain Type Classification Algorithm Module for GPM Dual-Frequency Precipitation Radar. J. Atmos. Ocean. Technol. 2016, 33, 1887–1898. [Google Scholar] [CrossRef]
- Jiang, H.; Black, P.G.; Zipser, E.J.; Marks, F.D.; Uhlhorn, E.W. Validation of rain-rate estimation in hurricanes from the stepped frequency microwave radiowave: Algorithm correct and error analysis. J. Atmos. Sci. 2006, 63, 252–267. [Google Scholar] [CrossRef]
- Marshall, J.S.; Langille, R.C.; Palmer, W.M.K. Measurement of rainfall by radar. J. Meteorol. 1947, 4, 186–192. [Google Scholar] [CrossRef]
- Wexler, R.; Atlas, D. Radar reflectivity and attenuation of rain. J. Appl. Meteorol. 1963, 2, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Olsen, R.; Rogers, D.; Hodge, D. The aRb relation in the calculation of rain attenuation. IEEE Trans. Antennas Propag. 1978, 26, 318–329. [Google Scholar] [CrossRef]
- Ulaby, F.; Long, D.G. Microwave Radar and Radiometric Remote Sensing, 1st ed.; University of Michigan Press: Ann Arbor, MI, USA, 2014; p. 1111. [Google Scholar]
- Battaglia, A.; Mroz, K.; Watters, D.; Ardhuin, F. GPM-Derived Climatology of Attenuation Due to Clouds and Precipitation at Ka-Band. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1812–1820. [Google Scholar] [CrossRef] [Green Version]
- Ardhuin, F.; Chapron, B.; Maes, C. Satellite Doppler Observations for the Motions of the Oceans. Bull. Am. Meteorol. Soc. 2019, 100, ES215–ES219. [Google Scholar] [CrossRef]
- Powell, M.D.; Houston, S.H.; Amat, L.R. The HRD real-time hurricane wind analysis system. J. Wind. Eng. Ind. Aerodyn. 1998, 77, 53–64. [Google Scholar] [CrossRef]
- Remund, Q.P.; Long, D.G. A Decade of QuikSCAT Scatterometer Sea Ice Extent Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4281–4290. [Google Scholar] [CrossRef] [Green Version]
- Bourassa, M.; McBeth-Ford, K. Uncertainty in scatterometer-derived vorticity. J. Atmos. Ocean. Technol. 2010, 27, 594–603. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, E. On the optimal design of Doppler scatterometers. Remote Sens. 2018, 10, 1765. [Google Scholar] [CrossRef] [Green Version]
- Uhlhorn, E.W.; Black, P.G. Verification of Remotely Sensed Sea Surface Winds in Hurricanes. J. Atmos. Ocean. Technol. 2003, 20, 99–116. [Google Scholar] [CrossRef]
Parameter | LF Radar | Tail Radar |
---|---|---|
Transmitter Frequency | 5370 ± 6.7 MHz | 9315 ± 11.6 MHz |
Transmitter Wavelength | 5.59 cm | 3.22 cm |
Transmitter Pulse | 6.0 μs | 0.5 μs |
PRF | 200 PPS | 1600 PPS |
Peak Transmitter Power | 70 kW (min) | 60 kW (min) |
Receiver Dynamic Range | 80 dB | 80 dB |
Gain (Main Beam) | 37.5 dB | 40 dB |
Gain (Sidelobe) | 23 dB down | 23 dB down |
Horizontal Beam Width | 1.1° | 1.35° |
Vertical Beam Width | 4.1° | 1.9° |
Antenna Stabilization | ±10° (pitch and roll) | ±25° (pitch and roll) |
Maximum Range | 371 km | 93 km |
Storm | Ka-Band (%) | Ku-Band (%) | C-Band (%) |
---|---|---|---|
Harvey | 38.581414 | 16.802261 | 0.162331 |
Irma | 29.070700 | 11.328826 | 0.196707 |
Jose | 38.411000 | 22.161955 | 0.003819 |
Maria | 34.110363 | 13.342632 | 0.017196 |
Nate | 27.912528 | 12.463712 | 0.042016 |
Storm | Ka-Band (%) | Ku-Band (%) | C-Band (%) |
---|---|---|---|
Harvey | 49.448073 | 26.607081 | 1.455253 |
Irma | 36.929452 | 16.468049 | 1.388411 |
Jose | 45.859434 | 29.893048 | 0.928189 |
Maria | 42.825206 | 20.779195 | 0.970651 |
Nate | 35.166157 | 17.910618 | 1.048510 |
Storm | Ka-Band (%) | Ku-Band (%) | C-Band (%) |
---|---|---|---|
Harvey | 51.974714 | 28.971391 | 2.127497 |
Irma | 39.058859 | 18.156296 | 2.033917 |
Jose | 47.729182 | 31.860198 | 1.478227 |
Maria | 45.089422 | 22.896285 | 1.534316 |
Nate | 37.226890 | 19.619938 | 1.629106 |
Storm | Ka-Band (%) | Ku-Band (%) | C-Band (%) |
---|---|---|---|
Harvey | 61.678316 | 37.254115 | 4.096482 |
Irma | 47.387418 | 24.137733 | 3.697337 |
Jose | 54.436592 | 38.294499 | 2.759740 |
Maria | 53.691531 | 30.157062 | 2.875649 |
Nate | 45.261650 | 25.412528 | 3.048128 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stow, J.P.; Bourassa, M.A.; Holbach, H.M. Analyzing Gaps in Hurricane Rain Coverage to Inform Future Satellite Proposals. Remote Sens. 2020, 12, 2673. https://doi.org/10.3390/rs12172673
Stow JP, Bourassa MA, Holbach HM. Analyzing Gaps in Hurricane Rain Coverage to Inform Future Satellite Proposals. Remote Sensing. 2020; 12(17):2673. https://doi.org/10.3390/rs12172673
Chicago/Turabian StyleStow, Justin P., Mark A. Bourassa, and Heather M. Holbach. 2020. "Analyzing Gaps in Hurricane Rain Coverage to Inform Future Satellite Proposals" Remote Sensing 12, no. 17: 2673. https://doi.org/10.3390/rs12172673
APA StyleStow, J. P., Bourassa, M. A., & Holbach, H. M. (2020). Analyzing Gaps in Hurricane Rain Coverage to Inform Future Satellite Proposals. Remote Sensing, 12(17), 2673. https://doi.org/10.3390/rs12172673