Comparative Analysis of the Impact of Two Common Residue Burning Parameters on Urban Air Quality Indicators
Abstract
:1. Introduction
2. Methods
2.1. Overview of the Study Area
2.2. Data Acquisition
2.2.1. MODIS and VIIRS Data
2.2.2. Air Quality Data
2.2.3. Land Cover Data
2.2.4. Meteorological Data
2.3. Research Methods
3. Results
3.1. Spatial—Temporal Distribution Characteristics of Fire Points and Burned Area of Crop Residue
3.2. Correlation Analysis between Residue Burning Indicators and Air Pollutant Concentration
3.2.1. Correlation Analysis between Residue Burning Indicators and AQI
3.2.2. Correlation Analysis between Residue Burning Indicators and Pollutant Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Xin, J.; Li, X.; Wang, Y. The Variability of Biomass Burning and Its Influence on Regional Aerosol Properties during the Wheat Harvest Season in North China. Atmos. Res. 2015, 157, 153–163. [Google Scholar] [CrossRef]
- Li, J.; Bo, Y.; Xie, S. Estimating Emissions from Crop Residue Open Burning in China Based on Statistics and MODIS Fire Products. J. Environ. Sci. 2016, 44, 158–170. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, M.; Lin, Y.; Luan, S.; Mao, N.; Chen, W.; Wang, M. Emission Inventory of Carbonaceous Pollutants from Biomass Burning in the Pearl River Delta Region, China. Atmos. Environ. 2013, 76, 189–199. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A Review of Biomass Burning: Emissions and Impacts on Air Quality, Health and Climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Zhang, X.; Zhang, S.; Chen, W.; Tong, D.; Xiu, A. Effects of Agricultural Biomass Burning on Regional Haze in China: A Review. Atmosphere 2017, 8, 88. [Google Scholar] [CrossRef] [Green Version]
- Andini, A.; Bonnet, S.; Rousset, P.; Hasanudin, U. Impact of Open Burning of Crop Residues on Air Pollution and Climate Change in Indonesia. Curr. Sci. 2018, 115, 2259. [Google Scholar] [CrossRef]
- He, G.; Liu, T.; Zhou, M. Straw Burning, PM2.5, and Death: Evidence from China. J. Dev. Econ. 2020, 145, 102468. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Zhao, J. Effect of Burning Straw in Rural Areas on Ecological Environment Quality. Arab. J. Geosci. 2021, 14, 1357. [Google Scholar] [CrossRef]
- Hesammi, E.; Talebi, A.B.; Hesammi, A. A Review on the Burning of Crop Residue on the Soil Properties. WALIA J. 2014, 30, 192–194. [Google Scholar]
- Aouizerats, B.; van der Werf, G.R.; Balasubramanian, R.; Betha, R. Importance of Transboundary Transport of Biomass Burning Emissions to Regional Air Quality in Southeast Asia during a High Fire Event. Atmos. Chem. Phys. 2015, 15, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, Y.; Zhang, Q.; Li, J.; Yang, X.; Jin, J. Wheat Straw Burning and Its Associated Impacts on Beijing Air Quality. Sci. China Ser. Earth Sci. 2008, 51, 403–414. [Google Scholar] [CrossRef]
- Chen, W.; Tong, D.Q.; Dan, M.; Zhang, S.; Zhang, X.; Pan, Y. Typical Atmospheric Haze during Crop Harvest Season in Northeastern China: A Case in the Changchun Region. J. Environ. Sci. 2017, 54, 101–113. [Google Scholar] [CrossRef]
- McCarty, J.L.; Korontzi, S.; Justice, C.O.; Loboda, T. The Spatial and Temporal Distribution of Crop Residue Burning in the Contiguous United States. Sci. Total Environ. 2009, 407, 5701–5712. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, L.; Sun, Z. GF-4 Satellite Fire Detection With an Improved Contextual Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 163–172. [Google Scholar] [CrossRef]
- Liu, J.; Wang, D.; Maeda, E.E.; Pellikka, P.K.E.; Heiskanen, J. Mapping Cropland Burned Area in Northeastern China by Integrating Landsat Time Series and Multi-Harmonic Model. Remote Sens. 2021, 13, 5131. [Google Scholar] [CrossRef]
- Lin, Y.; Rong, Y.; Yu, J.; Zhang, H.C.; Li, L. An Optimized Remote Sensing Recognition Approach for Straw Burning in Henan Province, China. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 127–134. [Google Scholar] [CrossRef]
- Cui, S.; Song, Z.; Zhang, L.; Shen, Z.; Hough, R.; Zhang, Z.; An, L.; Fu, Q.; Zhao, Y.; Jia, Z. Spatial and Temporal Variations of Open Straw Burning Based on Fire Spots in Northeast China from 2013 to 2017. Atmos. Environ. 2021, 244, 117962. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, H.; Wu, Z.; Tan, L. Comparing the Ability of Burned Area Products to Detect Crop Residue Burning in China. Remote Sens. 2022, 14, 693. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m Active Fire Detection Data Product: Algorithm Description and Initial Assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Vadrevu, K.; Lasko, K. Intercomparison of MODIS AQUA and VIIRS I-Band Fires and Emissions in an Agricultural Landscape—Implications for Air Pollution Research. Remote Sens. 2018, 10, 978. [Google Scholar] [CrossRef]
- Jain, N.; Bhatia, A.; Pathak, H. Emission of Air Pollutants from Crop Residue Burning in India. Aerosol Air Qual. Res. 2014, 14, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Kelly, F.J.; Fussell, J.C. Size, Source and Chemical Composition as Determinants of Toxicity Attributable to Ambient Particulate Matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Morakinyo, O.; Mokgobu, M.; Mukhola, M.; Hunter, R. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter. Int. J. Environ. Res. Public. Health 2016, 13, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Y.; Chen, D.; Li, R.; Chen, Z.; Cai, J.; He, B.; Gao, B.; Cheng, N.; Huang, Y. Understanding the Influence of Crop Residue Burning on PM2.5 and PM10 Concentrations in China from 2013 to 2017 Using MODIS Data. Int. J. Environ. Res. Public. Health 2018, 15, 1504. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; He, X.; Wang, H.; Wang, Y.; Zhang, M.; Mei, X.; Zhang, F.; Chen, L. Estimating Emissions from Crop Residue Open Burning in Central China from 2012 to 2020 Using Statistical Models Combined with Satellite Observations. Remote Sens. 2022, 14, 3682. [Google Scholar] [CrossRef]
- Zhuang, Y.; Li, R.; Yang, H.; Chen, D.; Chen, Z.; Gao, B.; He, B. Understanding Temporal and Spatial Distribution of Crop Residue Burning in China from 2003 to 2017 Using MODIS Data. Remote Sens. 2018, 10, 390. [Google Scholar] [CrossRef] [Green Version]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 Burned Area Algorithm: Generation of a Small Fire Database for Sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of Remotely Sensed Indices for Assessing Burn Severity in Interior Alaska Using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, H.; Tong, D.Q.; Xiu, A.; Zhang, X.; Gao, C. Impacts of Post-Harvest Open Biomass Burning and Burning Ban Policy on Severe Haze in the Northeastern China. Sci. Total Environ. 2020, 716, 136517. [Google Scholar] [CrossRef]
- Li, L.; Wang, K.; Chen, W.; Zhao, Q.; Liu, L.; Liu, W.; Liu, Y.; Jiang, J.; Liu, J.; Zhang, M. Atmospheric Pollution of Agriculture-Oriented Cities in Northeast China: A Case in Suihua. J. Environ. Sci. 2020, 97, 85–95. [Google Scholar] [CrossRef]
- Climate Bulletin of Heilongjiang Province (2020). Available online: http://hl.cma.gov.cn/zfxxgk/zwgk/qtxx/202101/t20210122_2638629.html (accessed on 12 July 2023).
- Statistical Bulletin on National Economic and Social Development of Daqing City, 2019. Available online: https://www.hlj.gov.cn/hlj/c107858/202005/c00_30588932.shtml (accessed on 12 July 2023).
- Combined Level 3 Direct Broadcast Burned Area Monthly Global 500 m SIN Grid-LAADS DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD64A1 (accessed on 11 July 2023).
- Giglio, L.; Boschetti, L.; Roy, D.; Hoffmann, A.A.; Humber, M.; Hall, J.V. Collection 6 MODIS Burned Area Product User’s Guide Version 1.3. 34; NASA: Washington, DC, USA, 2016.
- Schroeder, W.; Giglio, L. NASA VIIRS Land Science Investigator Processing System (SIPS) Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m & 750 m Active Fire Products: Product User’s Guide Version 1.4; NASA: Washington, DC, USA, 2018.
- NASA-FIRMS. Available online: https://firms.modaps.eosdis.nasa.gov/map/ (accessed on 11 July 2023).
- Resource and Environment Science and Data Center, Chinese Academy of Sciences. Available online: https://www.resdc.cn/ (accessed on 11 July 2023).
- Air Quality Online Testing and Analysing Platform. Available online: https://www.aqistudy.cn/historydata/ (accessed on 11 July 2023).
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global Land-Cover Product with Fine Classification System at 30 m Using Time-Series Landsat Imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- China Meteorologlcal Data Service Center-National Meteorological Information Center. Available online: http://data.cma.cn/ (accessed on 11 July 2023).
- China Meteorological Administration. Ground Surface Meteorological Observation; China Meteorological Press: Beijing, China, 2003; Volume 200, ISBN 978-7-5029-3690-7.
- Abdel-Megeed, S.M. Accuracy of Correlation Coefficient with Limited Number of Points. J. Exp. Educ. 1984, 52, 188–191. [Google Scholar] [CrossRef]
- Wu, H.H.; Liu, Y.P.; Liu, L.; Ling, J.; Liu, Y.H.; Liu, B.; Zheng, T.; Wang, P. Estimation method of air pollution load of straw burning in Harbin. Acta Sci. Circumstantiae 2020, 40, 3803–3812. [Google Scholar]
- Yang, Q.; Yuan, Q.; Yue, L.; Li, T. Investigation of the Spatially Varying Relationships of PM2.5 with Meteorology, Topography, and Emissions over China in 2015 by Using Modified Geographically Weighted Regression. Environ. Pollut. 2020, 262, 114257. [Google Scholar] [CrossRef] [PubMed]
- Moberly, J.G.; Bernards, M.T.; Waynant, K.V. Key Features and Updates for Origin 2018. J. Cheminformatics 2018, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Keshtkar, H.; Ashbaugh, L.L. Size Distribution of Polycyclic Aromatic Hydrocarbon Particulate Emission Factors from Agricultural Burning. Atmos. Environ. 2007, 41, 2729–2739. [Google Scholar] [CrossRef]
- Kim Oanh, N.T.; Ly, B.T.; Tipayarom, D.; Manandhar, B.R.; Prapat, P.; Simpson, C.D.; Sally Liu, L.-J. Characterization of Particulate Matter Emission from Open Burning of Rice Straw. Atmos. Environ. 2011, 45, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchis, E.; Ferrer, M.; Calvet, S.; Coscollà, C.; Yusà, V.; Cambra-López, M. Gaseous and Particulate Emission Profiles during Controlled Rice Straw Burning. Atmos. Environ. 2014, 98, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Jiao, L.; Xu, G.; Zhao, S.; Tang, X.; Zhou, Y.; Gong, C. Influences of Wind and Precipitation on Different-Sized Particulate Matter Concentrations (PM2.5, PM10, PM2.5–10). Meteorol. Atmos. Phys. 2018, 130, 383–392. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Li, X.; Xin, J.; Liu, Z.; Sun, Y.; Liu, J.; Zhang, Y.; Du, W.; Jin, X.; et al. Emission Characteristics of Size Distribution, Chemical Composition and Light Absorption of Particles from Field-Scale Crop Residue Burning in Northeast China. Sci. Total Environ. 2020, 710, 136304. [Google Scholar] [CrossRef]
Farmland Area (km2) | Residue Burning Fire Point | Residue Burned Area (km2) | |
---|---|---|---|
Zhaoyuan District | 2530 | 584 | 631.74 |
Dorbud County | 2505 | 538 | 218.46 |
Lindian County | 1250 | 374 | 128.27 |
Datong District | 1091 | 150 | 75.99 |
Zhaozhou County | 667 | 633 | 47.7 |
Honggang District | 359 | 1 | 0.09 |
Ranghu District | 331 | 53 | 1.58 |
Saltu District | 226 | 13 | 0 |
Longfeng District | 173 | 3 | 0.09 |
Total | 9132 ** | 2349 ** | 1103.92 ** |
Residue Fire Points | Residue Burned Area | ||
---|---|---|---|
Farmland area | Pearson correlation | 0.75 * | 0.85 ** |
sig. (two-tailed) | 0.02 | 0.00 | |
N | 9 | 9 |
25 km Buffer | 50 km Buffer | 75 km Buffer | 100 km Buffer | ||
---|---|---|---|---|---|
Buffer zone fire points | Pearson correlation | 0.64 ** | 0.75 ** | 0.61 ** | 0.61 ** |
sig. (two-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | |
Buffer zone burned area | Pearson correlation | 0.79 ** | 0.82 ** | 0.80 ** | 0.75 ** |
sig. (two-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | |
N | 59 | 59 | 59 | 59 |
25 km Buffer | 50 km Buffer | 75 km Buffer | 100 km Buffer | ||
---|---|---|---|---|---|
PM2.5 | Pearson correlation | 0.56 ** | 0.68 ** | 0.59 ** | 0.59 ** |
sig. (two-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | |
PM10 | Pearson correlation | 0.49 ** | 0.53 ** | 0.45 ** | 0.44 ** |
sig. (two-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | |
CO | Pearson correlation | 0.44 ** | 0.49 ** | 0.44 ** | 0.49 ** |
sig. (two-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | |
NO2 | Pearson correlation | 0.43 ** | 0.48 ** | 0.40 ** | 0.39 ** |
sig. (two-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | |
O3 | Pearson correlation | 0.16 | 0.19 | 0.16 | 0.12 |
sig. (two-tailed) | 0.23 | 0.15 | 0.23 | 0.364 | |
SO2 | Pearson correlation | 0.06 | 0.14 | 0.09 | 0.09 |
sig. (two-tailed) | 0.67 | 0.31 | 0.49 | 0.49 | |
N | 59 | 59 | 59 | 59 |
25 km Buffer | 50 km Buffer | 75 km Buffer | 100 km Buffer | ||
---|---|---|---|---|---|
PM2.5 | Pearson correlation | 0.79 ** | 0.81 ** | 0.80 ** | 0.75 ** |
sig. (two-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | |
PM10 | Pearson correlation | 0.64 ** | 0.67 ** | 0.67 ** | 0.63 ** |
sig. (two-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | |
CO | Pearson correlation | 0.54 ** | 0.59 ** | 0.54 ** | 0.51 ** |
sig. (two-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | |
NO2 | Pearson correlation | 0.49 ** | 0.54 ** | 0.49 ** | 0.45 ** |
sig. (two-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | |
O3 | Pearson correlation | 0.10 | 0.15 | 0.14 | 0.07 |
sig. (two-tailed) | 0.44 | 0.27 | 0.29 | 0.61 | |
SO2 | Pearson correlation | 0.20 | 0.22 | 0.17 | 0.15 |
sig. (two-tailed) | 0.14 | 0.10 | 0.20 | 0.25 | |
N | 59 | 59 | 59 | 59 |
25 km Buffer | 50 km Buffer | 75 km Buffer | 100 km Buffer | ||
---|---|---|---|---|---|
Buffer zone fire point | Pearson correlation | 0.66 ** | 0.77 ** | 0.66 ** | 0.64 ** |
sig. (two-tailed) | 0.00 | 0.00 | 0.00 | 0.00 | |
Buffer zone area | Pearson correlation | 0.83 ** | 0.88 ** | 0.84 ** | 0.79 ** |
sig. (two-tailed) | 0.00 | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Li, D.; Song, K.; Zheng, Z.; Wang, Y. Comparative Analysis of the Impact of Two Common Residue Burning Parameters on Urban Air Quality Indicators. Remote Sens. 2023, 15, 3911. https://doi.org/10.3390/rs15153911
Du J, Li D, Song K, Zheng Z, Wang Y. Comparative Analysis of the Impact of Two Common Residue Burning Parameters on Urban Air Quality Indicators. Remote Sensing. 2023; 15(15):3911. https://doi.org/10.3390/rs15153911
Chicago/Turabian StyleDu, Jia, Dianjia Li, Kaishan Song, Zhi Zheng, and Yan Wang. 2023. "Comparative Analysis of the Impact of Two Common Residue Burning Parameters on Urban Air Quality Indicators" Remote Sensing 15, no. 15: 3911. https://doi.org/10.3390/rs15153911
APA StyleDu, J., Li, D., Song, K., Zheng, Z., & Wang, Y. (2023). Comparative Analysis of the Impact of Two Common Residue Burning Parameters on Urban Air Quality Indicators. Remote Sensing, 15(15), 3911. https://doi.org/10.3390/rs15153911