Varying Effects of Urban Tree Canopies on Residential Property Values across Neighborhoods
Abstract
:1. Introduction
2. Related Literature
3. Data and Study Area
4. Model
4.1. Spatial Model
4.2. Multi-Level Model
5. Model Results
5.1. Spatial Model Results
5.2. Multi-Level Model Results
6. Conclusions and Discussions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
(1) | (2) | (3) | (4) | (5) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Estimate | t–Value | Estimate | t–Value | Estimate | t–Value | Estimate | t–Value | Estimate | t–Value | |
_cons | 4.034 *** | (35.04) | 4.263 *** | (28.77) | 4.083 *** | (35.33) | 4.733 *** | (26.26) | 4.919 *** | (26.59) |
%_tree | 0.0002 | (1.35) | −0.005 * | (−2.38) | −0.001 * | (−2.30) | −0.018 *** | (−4.99) | −0.023 *** | (−6.03) |
%_tree*ln_land | NA | 0.001 * | (2.45) | NA | NA | NA | ||||
%_tree*age | NA | NA | 0.000 ** | (3.14) | NA | 0.000 *** | (4.43) | |||
%_tree*ln_income | NA | NA | NA | 0.002 *** | (5.04) | 0.002 *** | (5.85) | |||
age | −0.006 *** | (−16.71) | −0.006 *** | (−16.85) | −0.007 *** | (−43.47) | −0.006 *** | (−17.18) | −0.007 *** | (−17.74) |
age2 | −0.000 | (−0.80) | −0.000 | (−0.69) | NA | −0.000 | (−0.36) | −0.000 | (−0.91) | |
fin_bsmt | 0.000 *** | (14.39) | 0.000 *** | (14.32) | 0.000 *** | (14.79) | 0.000 *** | (14.35) | 0.000 *** | (14.63) |
bedrooms | 0.025 *** | (6.78) | 0.025 *** | (6.81) | 0.025 *** | (6.74) | 0.025 *** | (6.81) | 0.025 *** | (6.76) |
bathrooms | 0.035 *** | (5.80) | 0.034 *** | (5.69) | 0.033 *** | (5.54) | 0.034 *** | (5.70) | 0.033 *** | (5.52) |
fireplaces | 0.106 *** | (18.53) | 0.106 *** | (18.46) | 0.106 *** | (18.51) | 0.106 *** | (18.52) | 0.104 *** | (18.27) |
ln_living | 0.659 *** | (59.83) | 0.658 *** | (59.77) | 0.657 *** | (60.44) | 0.658 *** | (59.71) | 0.658 *** | (59.74) |
ln_land | 0.095 *** | (14.54) | 0.071 *** | (5.99) | 0.096 *** | (14.69) | 0.093 *** | (14.21) | 0.093 *** | (14.24) |
far | −0.000 | (−1.13) | −0.000 | (−1.17) | −0.000 | (−1.16) | −0.000 | (−1.15) | −0.000 | (−1.14) |
con_1 | −0.310 *** | (−30.72) | −0.310 *** | (−30.72) | −0.309 *** | (−30.66) | −0.310 *** | (−30.73) | −0.310 *** | (−30.68) |
con_2 | −0.684 *** | (−45.16) | −0.683 *** | (−45.14) | −0.684 *** | (−45.18) | −0.683 *** | (−45.12) | −0.683 *** | (−45.17) |
con_4 | 0.333 *** | (43.39) | 0.332 *** | (43.30) | 0.335 *** | (44.24) | 0.332 *** | (43.25) | 0.332 *** | (43.32) |
con_5 | 0.180 *** | (29.58) | 0.180 *** | (29.59) | 0.183 *** | (30.82) | 0.180 *** | (29.52) | 0.181 *** | (29.68) |
major_road | −0.022 *** | (−3.52) | −0.022 *** | (−3.55) | −0.021 *** | (−3.36) | −0.022 *** | (−3.65) | −0.021 *** | (−3.50) |
water | −0.023 | (−0.87) | −0.024 | (−0.88) | −0.028 | (−1.03) | −0.020 | (−0.75) | −0.023 | (−0.87) |
golfcourse | 0.033 | (1.01) | 0.033 | (1.02) | 0.032 | (0.99) | 0.030 | (0.92) | 0.027 | (0.84) |
park | −0.021* | (−2.12) | −0.021 * | (−2.13) | −0.021 * | (−2.13) | −0.022 * | (−2.23) | −0.022 * | (−2.24) |
openspace | −0.019 | (−1.14) | −0.019 | (−1.13) | −0.021 | (−1.26) | −0.019 | (−1.12) | −0.021 | (−1.24) |
cemetery | 0.002 | (0.09) | 0.002 | (0.10) | 0.002 | (0.07) | 0.001 | (0.02) | −0.000 | (−0.01) |
rail | −0.041 * | (−2.26) | −0.042 * | (−2.34) | −0.039 * | (−2.17) | −0.046 * | (−2.54) | −0.045 * | (−2.46) |
foreclosure | −0.456 *** | (−80.14) | −0.456 *** | (−80.16) | −0.456 *** | (−80.15) | −0.456 *** | (−80.18) | −0.456 *** | (−80.21) |
p_white | 0.338 *** | (19.42) | 0.337 *** | (19.37) | 0.341 *** | (19.79) | 0.337 *** | (19.35) | 0.336 *** | (19.34) |
crime | −0.003 *** | (−8.81) | −0.003 *** | (−8.87) | −0.003 *** | (−9.10) | −0.003 *** | (−9.07) | −0.003 *** | (−9.21) |
ln_income | 0.183 *** | (21.03) | 0.183 *** | (21.02) | 0.182 *** | (20.98) | 0.122 *** | (8.14) | 0.107 *** | (7.03) |
year and quarter dummy | Yes | Yes | Yes | Yes | Yes | |||||
Adj.R-sq | 0.7096 | 0.7097 | 0.7097 | 0.7099 | 0.7101 |
References
- Alig, R.J.; Kline, J.D.; Lichtenstein, M. Urbanization on the US landscape: Looking ahead in the 21st century. Landsc. Urban Plan. 2004, 69, 219–234. [Google Scholar] [CrossRef]
- McPherson, E.G. Modeling residential landscape water and energy use to evaluate water conservation policies. Landsc. J. 1990, 9, 122–134. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovern, M.; Pasher, J. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban For. Urban Green. 2018, 29, 40–48. [Google Scholar] [CrossRef]
- Morancho, A.B. A hedonic valuation of urban green areas. Landsc. Urban Plan. 2003, 66, 35–41. [Google Scholar] [CrossRef]
- Bertram, C.; Rehdanz, K. The role of urban green space for human well-being. Ecol. Econ. 2015, 120, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Wolf, K. Prelude to an Urban Forest Master Plan; Des Moines, IA: Des Moines, IA, USA, 2013. [Google Scholar]
- Schwarz, K.; Fragkias, M.; Boone, C.G.; Zhou, W.; McHale, M.; Grove, J.M.; Ogden, L. Trees grow on money: Urban tree canopy cover and environmental justice. PLoS ONE 2015, 10, e0122051. [Google Scholar] [CrossRef] [Green Version]
- Henry, K.; Daniel, P. Valuing open space in a residential sorting model of the Twin Cities. J. Environ. Econ. Manag. 2010, 60, 57–77. [Google Scholar]
- Irwin, E.G. The effects of open space on residential property values. Land Econ. 2002, 78, 465–480. [Google Scholar] [CrossRef]
- Sander, H.; Polasky, S.; Haight, R.G. The value of urban tree cover: A hedonic property price model in Ramsey and Dakota Counties, Minnesota, USA. Ecol. Econ. 2010, 69, 1646–1656. [Google Scholar] [CrossRef]
- Greene, C.S.; Robinson, P.J.; Millward, A.A. Canopy of advantage: Who benefits most from city trees? J. Environ. Manag. 2018, 208, 24–35. [Google Scholar] [CrossRef]
- McPherson, E.G.; Simpson, J.R.; Xiao, Q.; Wu, C. Million trees Los Angeles canopy cover and benefit assessment. Landsc. Urban Plan. 2011, 99, 40–50. [Google Scholar] [CrossRef]
- Anderson, L.M.; Cordell, H.K. Influence of trees on residential property values in Athens, Georgia (USA): A survey based on actual sales prices. Landsc. Urban Plan. 1988, 15, 153–164. [Google Scholar] [CrossRef]
- François, D.R.; Marius, T.; Yan, K.; Paul, V. Landscaping and house values: An empirical investigation. J. Real Estate Res. 2002, 23, 139–162. [Google Scholar]
- Conway, D.; Li, C.Q.; Wolch, J.; Kahle, C.; Jerrett, M. A spatial autocorrelation approach for examining the effects of urban green space on residential property values. J. Real Estate Financ. Econ. 2010, 41, 150–169. [Google Scholar] [CrossRef]
- Maco, S.E.; McPherson, A.G. Apractical approach to assessing structure, func-tion, and value of street tree populations in smallcommunities. J. Arboric. 2003, 29, 84–97. [Google Scholar]
- Harrison, D.; Rubinfeld, D.L. Hedonic housing prices and the demand for clean air. J. Environ. Econ. Manag. 1978, 5, 81–102. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.W.; Phipps, T.T.; Anselin, L. Measuring the benefits of air quality improvement: A spatial hedonic approach. J. Environ. Econ. Manag. 2003, 45, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Chay, K.Y.; Greenstone, M. Does air quality matter? Evidence from the housing market. J. Polit. Econ. 2005, 113, 376–424. [Google Scholar] [CrossRef] [Green Version]
- Simons, R.A.; Seo, Y.; Rosenfeld, P. Modeling the Effects of Refinery Emissions on Residential Property Values. J. Real Estate Res. 2015, 37, 321–342. [Google Scholar]
- Laverne, R.J.; Winson-Geideman, K. The influence of trees and landscaping on rental rates at office buildings. J. Arboric. 2003, 29, 281–290. [Google Scholar]
- Cho, S.H.; Poudyal, N.C.; Roberts, R.K. Spatial analysis of the amenity value of green open space. Ecol. Econ. 2008, 66, 403–416. [Google Scholar] [CrossRef]
- Cho, S.H.; Clark, C.D.; Park, W.M.; Kim, S.G. Spatial and temporal variation in the housing market values of lot size and open space. Land Econ. 2009, 85, 51–73. [Google Scholar] [CrossRef]
- Saphores, J.D.; Li, W. Estimating the value of urban green areas: A hedonic pricing analysis of the single family housing market in Los Angeles, CA. Landsc. Urban Plan. 2012, 104, 373–387. [Google Scholar] [CrossRef]
- Glaesener, M.L.; Caruso, G. Neighborhood green and services diversity effects on land prices: Evidence from a multilevel hedonic analysis in Luxembourg. Landsc. Urban Plan. 2015, 143, 100–111. [Google Scholar] [CrossRef]
- Wachter, S.M.; Wong, G. What Is a Tree Worth? Green-City Strategies, Signaling and Housing Prices. Real Estate Econ. 2008, 36, 213–239. [Google Scholar] [CrossRef]
- Sommer, R.; Learey, F.; Summit, J.; Tirrell, M. The social benefits of resident involvement in tree planting. J. Arboric. 1994, 20, 170. [Google Scholar]
- O’Neil-Dunne, J. A report on the City of Des Moines Existing and Possible Urban Tree Canopy. 2009. Available online: http://www.fs.fed.us/nrs/utc/reports/UTC_Report_DesMoines.pdf (accessed on 11 April 2016).
- Anselin, L. Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr. Anal. 1988, 20, 1–17. [Google Scholar] [CrossRef]
- Bivand, R.; Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat Softw. 2015, 63, 18. [Google Scholar] [CrossRef] [Green Version]
- Kelejian, H.H.; Prucha, I.R. A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J. Real Estate Financ. Econ. 1998, 17, 99–121. [Google Scholar] [CrossRef]
- Arraiz, I.; Drukker, D.M.; Kelejian, H.H.; Prucha, I.R. A spatial cliff-ord-type model with heteroskedastic innovations: Small and large sample results. J. Reg. Sci. 2010, 50, 592–614. [Google Scholar] [CrossRef] [Green Version]
- Donovan, G.H.; Butry, D.T. Trees in the city: Valuing street trees in Portland, Oregon. Landsc. Urban Plan. 2010, 94, 77–83. [Google Scholar] [CrossRef]
Variable | Variable Definition | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
price | Sale price | $105,593 | $75,229 | $10,000 | $1,264,000 |
ln_hp | Log of sale prices | 11.348 | 0.697 | 9.210 | 14.050 |
w_hp | Lagged log of sale price | 11.316 | 0.402 | 8.573 | 13.041 |
%_tree | Percentage of tree cover | 34.641 | 20.715 | 0 | 100.00 |
sz_tree | Size of tree cover | 3671.36 | 4364.38 | 0 | 80,575.7 |
age | Property age | 71.177 | 28.432 | 0 | 164 |
con_bnormal | Dummy for Below normal condition | 0.075 | 0.263 | 0 | 1 |
con_poor | Dummy for poor or very poor | 0.029 | 0.167 | 0 | 1 |
con_normal | Dummy for normal | 0.313 | 0.464 | 0 | 1 |
con_good | Dummy for very good or excellent | 0.174 | 0.379 | 0 | 1 |
con_anormal | Dummy for Above normal condition | 0.410 | 0.492 | 0 | 1 |
ln_land | Log of land size | 9.082 | 0.437 | 7.507 | 11.512 |
ln_living | Log of living space | 7.030 | 0.357 | 5.808 | 9.098 |
far | Floor to Area ratio | 16.352 | 20.638 | 0.890 | 3028.051 |
bedrooms | Number of bedrooms | 2.665 | 0.831 | 0 | 8 |
bathrooms | Number of bathrooms | 1.277 | 0.534 | 0 | 7 |
fireplaces | Number of fireplaces | 0.310 | 0.535 | 0 | 5 |
fin_bsmt | Finished basement (sqft) | 128.622 | 248.285 | 0 | 3100 |
foreclosure | Dummy for foreclosed homes | 0.259 | 0.438 | 0 | 1 |
golfcourse | Dummy for golf course | 0.006 | 0.075 | 0 | 1 |
park | Dummy for park | 0.067 | 0.249 | 0 | 1 |
openspace | Dummy for open space | 0.021 | 0.143 | 0 | 1 |
cemetery | Dummy for cemetery | 0.010 | 0.101 | 0 | 1 |
water | Dummy for Water | 0.009 | 0.093 | 0 | 1 |
major_road | Dummy for major road | 0.204 | 0.403 | 0 | 1 |
rail | Dummy for Railroad | 0.018 | 0.134 | 0 | 1 |
crime | Number of crime incidents | 9.575 | 8.111 | 0 | 46 |
med_income | Median household income | $51,361 | $17,689 | $14,808 | $163,500 |
ln_income | Log of median income | 10.788 | 0.348 | 9.603 | 12.005 |
p_white | Percentage of white population | 0.809 | 0.167 | 0.089 | 1 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Land(sqft) | 1820–6600 | 6602–7295 | 7296–8450 | 8452–11,440 | 11,450+ |
%_Tree | 32.30% | 33.11% | 32.53% | 34.81% | 40.55% |
size_tree | 1914 | 2304 | 2552 | 3388 | 8250 |
Average age | 0–51 years old | 52–62 years old | 63–85 years old | 86–97 years old | 98+ |
%_Tree | 30.62% | 35.49% | 37.88% | 34.68% | 34.49% |
size_tree | 3783 | 3954 | 4011 | 3296 | 3276 |
Income($) | $14,808–36,313 | $36,699–47,273 | $47,500–53,947 | $54,219–63,859 | $64,393–1,635,000 |
%_Tree | 33.38% | 31.83% | 35.62% | 35.87% | 36.57% |
sz_tree | 2901 | 2934 | 3783 | 3983 | 4782 |
Neighborhood | New and poor | New and affluent | Reference | Old and poor | Old and affluent |
%_Tree | 32.89% | 34.54% | 35.35% | 33.96% | 36.38% |
size_tree | 3554 | 4758 | 3733 | 2644 | 3212 |
Variable | (1) | (2) | (3) | (4) | (5) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Estimate | Z-Value | Estimate | z-Value | Estimate | z-Value | Estimate | z-Value | Estimate | z-Value | |
con_ | 3.909 | (25.44) *** | 4.143 | (21.38) *** | 3.950 | (25.58) *** | 4.600 | (21.64) *** | 4.787 | (22.36) *** |
%_tree | 0.0002 | (1.34) | −0.005 | (−1.96) | −0.001 | (−2.71) ** | −0.018 | (−4.51) *** | −0.023 | (−5.67) *** |
%_tree*ln_land | 0.001 | (2.02) * | ||||||||
%_tree*ln_age | 0.00001 | (3.14) ** | 0.00002 | (4.34) *** | ||||||
%_tree*ln_income | 0.002 | (4.59) *** | 0.002 | (5.47) *** | ||||||
age | −0.006 | (−16.55) *** | −0.006 | (−16.75) *** | −0.006 | (−16.82) *** | −0.006 | (−17.05) *** | −0.007 | (−17.62) *** |
age2 | −0.000002 | (−0.71) | −0.000002 | (−0.6) | −0.000003 | (−1.13) | −0.000001 | (−0.29) | −0.000002 | (−0.8) |
fin_bsmt | 0.0002 | (15.72) *** | 0.0002 | (15.61) *** | 0.0002 | (15.94) *** | 0.0002 | (15.71) *** | 0.0002 | (16.04) *** |
bedrooms | 0.025 | (6.17) *** | 0.025 | (6.2) *** | 0.025 | (6.14) *** | 0.025 | (6.2) *** | 0.025 | (6.17) *** |
bathrooms | 0.035 | (5.76) *** | 0.034 | (5.66) *** | 0.034 | (5.65) *** | 0.034 | (5.66) *** | 0.033 | (5.49) *** |
fireplaces | 0.107 | (19.64) *** | 0.106 | (19.57) *** | 0.106 | (19.42) *** | 0.107 | (19.62) *** | 0.105 | (19.34) *** |
ln_living | 0.657 | (54.65) *** | 0.657 | (54.6) *** | 0.657 | (54.67) *** | 0.656 | (54.52) *** | 0.656 | (54.54) *** |
ln_land | 0.095 | (12.86) *** | 0.070 | (4.83) *** | 0.095 | (12.91) *** | 0.093 | (12.57) *** | 0.093 | (12.59) *** |
far | −0.0001 | (−2.26) * | −0.0001 | (−2.17) * | −0.0001 | (−2.37) * | −0.0001 | (−2.27) * | −0.0001 | (−2.43) * |
con_bnormal | −0.311 | (−23.55) *** | −0.311 | (−23.55) *** | −0.310 | (−23.5) *** | −0.311 | (−23.55) *** | −0.310 | (−23.48) *** |
con_poor | −0.685 | (−31.12) *** | −0.685 | (−31.13) *** | −0.686 | (−31.15) *** | −0.684 | (−31.12) *** | −0.685 | (−31.16) *** |
con_good | 0.332 | (44.63) *** | 0.332 | (44.6) *** | 0.333 | (44.7) *** | 0.331 | (44.51) *** | 0.332 | (44.59) *** |
con_anormal | 0.180 | (29.02) *** | 0.180 | (29.02) *** | 0.181 | (29.1) *** | 0.180 | (28.96) *** | 0.181 | (29.09) *** |
major_road | −0.020 | (−3.16) ** | −0.021 | (−3.19) ** | −0.020 | (−3.04) ** | −0.021 | (−3.29) ** | −0.020 | (−3.15) ** |
water | −0.021 | (−0.82) | −0.022 | (−0.83) | −0.024 | (−0.93) | −0.018 | (−0.69) | −0.022 | (−0.82) |
golfcourse | 0.035 | (1.29) | 0.035 | (1.30) | 0.033 | (1.24) | 0.032 | (1.18) | 0.029 | (1.09) |
park | −0.020 | (−2.03) * | −0.021 | (−2.04) * | −0.020 | (−2.02) * | −0.021 | (−2.13) * | −0.022 | (−2.14) * |
openspace | −0.018 | (−1.01) | −0.018 | (−1.01) | −0.019 | (−1.1) | −0.018 | (−1) | −0.020 | (−1.12) |
cemetery | 0.007 | (0.25) | 0.007 | (0.25) | 0.007 | (0.24) | 0.005 | (0.18) | 0.005 | (0.16) |
rail | −0.038 | (−1.83). | −0.039 | (−1.91). | −0.036 | (−1.75). | −0.043 | (−2.08) * | −0.041 | (−2.01) * |
foreclosure | −0.456 | (−69.54) *** | −0.456 | (−69.57) *** | −0.456 | (−69.55) *** | −0.456 | (−69.55) *** | −0.456 | (−69.57) *** |
p_white | 0.339 | (17.52) *** | 0.338 | (17.49) *** | 0.339 | (17.52) *** | 0.338 | (17.44) *** | 0.337 | (17.43) *** |
crime | −0.003 | (−8.57) *** | −0.003 | (−8.63) *** | −0.003 | (−8.63) *** | −0.003 | (−8.84) *** | −0.003 | (−8.97) *** |
ln_income | 0.182 | (19.33) *** | 0.182 | (19.34) *** | 0.180 | (19.05) *** | 0.121 | (7.58) *** | 0.107 | (6.65) *** |
λ | 0.013 | (1.52) | 0.013 | (1.51) | 0.013 | (1.52) | 0.013 | (1.57) | 0.013 | (1.57) |
ρ | 0.125 | (8.51) *** | 0.125 | (8.54) *** | 0.125 | (8.52) *** | 0.124 | (8.48) *** | 0.124 | (8.48) *** |
year*quarter fixed | Yes | Yes | Yes | Yes | Yes | |||||
obs | 24,203 | 24,203 | 24,203 | 24,203 | 24,203 | |||||
Wald Chi | 126.43 | 126.92 | 126.36 | 126.32 | 126.22 |
Panel A: Fixed Model Results | ||||||||
---|---|---|---|---|---|---|---|---|
Variables | (1) | (2) | (3) | (4) | ||||
Land Constraints | New Development | Neighborhood Income | Neighborhood Characteristics | |||||
Estimate | z–Value | Estimate | z–Value | Estimate | z–Value | Estimate | z–Value | |
_cons | 3.110 | (19.20)*** | 2.581 | (16.53)*** | 5.079 | (47.49)*** | 3.210 | (20.92)*** |
%_tree | 0.0002 | (0.60) | −0.0002 | (−0.46) | 0.0001 | (0.14) | 0.0001 | (0.37) |
age | −0.007 | (−17.39)*** | NA | −0.006 | (−16.80)*** | −0.007 | (−18.09)*** | |
age2 | 0.000001 | (0.51) | NA | −0.000001 | (−0.49) | 0.000002 | (0.83) | |
fin_bsmt | 0.0002 | (14.08)*** | 0.0002 | (13.3)*** | 0.0002 | (14.59)*** | 0.0002 | (14.54)*** |
bedrooms | 0.023 | (6.36)*** | 0.022 | (6.05)*** | 0.025 | (7.00)*** | 0.024 | (6.61)*** |
bathrooms | 0.039 | (6.46)*** | 0.057 | (9.67)*** | 0.034 | (5.77)*** | 0.038 | (6.32)*** |
fireplaces | 0.104 | (18.4)*** | 0.095 | (16.43)*** | 0.099 | (17.37)*** | 0.100 | (17.60)*** |
ln_living | 0.648 | (59.27)*** | 0.662 | (59.80)*** | 0.640 | (58.31)*** | 0.648 | (58.92)*** |
ln_land | 0.105 | (8.83)*** | 0.091 | (13.86)*** | 0.095 | (14.62)*** | 0.098 | (14.55)*** |
far | 0.000 | (−0.68) | 0.000 | (−1.14) | 0.000 | (−0.94) | 0.000 | (−1.37) |
con_bnormal | −0.306 | (−30.6)*** | −0.335 | (−33.36)*** | −0.303 | (−30.34)*** | −0.304 | (−30.39)*** |
con_poor | −0.673 | (−44.87)*** | −0.711 | (−46.95)*** | −0.675 | (−45.01)*** | −0.671 | (−44.74)*** |
con_good | 0.327 | (43.06)*** | 0.292 | (38.74)*** | 0.330 | (43.47)*** | 0.333 | (43.85)*** |
con_anormal | 0.176 | (29.12)*** | 0.145 | (24.56)*** | 0.180 | (29.83)*** | 0.181 | (29.92)*** |
major_road | −0.020 | (−3.32)** | −0.023 | (−3.74)*** | −0.018 | (−2.92)** | −0.023 | (−3.75)*** |
water | −0.013 | (−0.47) | −0.004 | (−0.15) | −0.037 | (−1.39) | −0.014 | (−0.52) |
golfcourse | 0.041 | (1.28) | 0.022 | (0.68) | 0.054 | (1.68)* | 0.029 | (0.92) |
park | −0.016 | (−1.59) | −0.015 | (−1.47) | −0.022 | (−2.26)** | −0.022 | (−2.20)** |
openspace | −0.015 | (−0.88) | −0.004 | (−0.23) | −0.022 | (−1.28) | −0.014 | (−0.81) |
cemetery | 0.026 | (1.08) | 0.007 | (0.30) | 0.001 | (0.06) | 0.010 | (0.41) |
rail | −0.041 | (−2.30)** | −0.050 | (−2.73)** | −0.041 | (−2.27)** | −0.036 | (−2.00)** |
foreclosure | −0.452 | (−80.21)*** | −0.455 | (−79.53)*** | −0.450 | (−79.83)*** | −0.452 | (−80.11)*** |
p_white | 0.320 | (18.55)*** | 0.300 | (17.21)*** | −0.003 | (−7.40)*** | 0.331 | (19.16)*** |
crime | −0.003 | (−9.03)*** | −0.003 | (−8.54)*** | 0.345 | (19.86)*** | −0.003 | (−8.44)*** |
ln_income | 0.171 | (19.83)*** | 0.181 | (20.73)*** | NA | 0.168 | (14.87)*** | |
w_hp | 0.093 | (15.32)*** | 0.093 | (15.19)*** | 0.093 | (15.31)*** | 0.094 | (15.55)*** |
year*quarter fixed | Yes | Yes | Yes | Yes | ||||
Obs. | 24,203 | 24,203 | 24,203 | 24,203 | ||||
Log likelihood | −10,396.486 | −10,725.457 | −10,378.507 | −10,392.023 | ||||
Panel B: Random Model Results | ||||||||
Category | (1) | (2) | (3) | (4) | ||||
Land Constraints | New Development | Neighborhood Income | Neighborhoods | |||||
Range (sqft) | Estimate | Range (year) | Estimate | Range ($) | Estimate | Range ($) | Estimate | |
(1) | 1820–6600 | −0.00068 | 0–51 | −0.0012 | 1480–36,313 | −0.0003 | reference | 0.00038 |
(2) | 6602–7295 | 0.00008 | 52–62 | −0.0007 | 36,699–47,273 | −0.0007 | new and poor | −0.00050 |
(3) | 7296–8450 | −0.00007 | 63–85 | 0.0002 | 47,500–53,947 | −0.0001 | new and affluence | 0.00036 |
(4) | 8452–11,440 | 0.00088 | 86–97 | 0.0003 | 54,219–63,859 | −0.0001 | old and poor | −0.00003 |
(5) | 11,450+ | 0.00069 | 98+ | 0.0006 | 63,860+ | 0.0015 | old and affluence | 0.00020 |
LR test () | 158.4 | 3341.04 | 611.94 | 167.33 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, Y. Varying Effects of Urban Tree Canopies on Residential Property Values across Neighborhoods. Sustainability 2020, 12, 4331. https://doi.org/10.3390/su12104331
Seo Y. Varying Effects of Urban Tree Canopies on Residential Property Values across Neighborhoods. Sustainability. 2020; 12(10):4331. https://doi.org/10.3390/su12104331
Chicago/Turabian StyleSeo, Youngme. 2020. "Varying Effects of Urban Tree Canopies on Residential Property Values across Neighborhoods" Sustainability 12, no. 10: 4331. https://doi.org/10.3390/su12104331
APA StyleSeo, Y. (2020). Varying Effects of Urban Tree Canopies on Residential Property Values across Neighborhoods. Sustainability, 12(10), 4331. https://doi.org/10.3390/su12104331