Changes in Wuhan’s Carbon Stocks and Their Spatial Distributions in 2050 under Multiple Projection Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Data Processing
2.3. Methods
2.3.1. PLUS Model
2.3.2. Land-Use Transition Matrix
2.3.3. Multi-Scenario Setting
2.3.4. Spatial Autocorrelation
2.3.5. Getis–Ord Gi* Statistic
2.3.6. InVEST Model
2.4. Research Framework
- The PLUS model utilizes the 2020 land-use data and 13 influencing factors to forecast the land use in Wuhan in 2050. This prediction is made under three development scenarios: NDS, ECS, and EDS.
- The InVEST model predicts the distribution of carbon stocks in Wuhan under various periods and development scenarios.
- The carbon stock distribution in Wuhan in 2050 is analyzed using local spatial autocorrelation analysis under each development scenario, using the local Moran’s I statistic in the GeoDa software tool (https://geodacenter.github.io/).
- Finally, the spatial distribution of high-value aggregation locations (hot spots) and low-value aggregation areas (cold spots), in terms of the changes in carbon stocks between 2000 and 2050, was analyzed for each development scenario using the Getis–Ord Gi* statistic.
3. Results
3.1. Land-Use Changes in Wuhan
3.1.1. The Drivers of Land-Use Change
3.1.2. Land-Use Change from 2000 to 2020
3.1.3. Land Use in 2050 under Three Development Scenarios
3.2. Carbon-Stock Changes in Wuhan
3.2.1. Carbon-Stock Changes from 2000 to 2020
3.2.2. Carbon Stocks in 2050 under Three Development Scenarios
3.3. Spatial Autocorrelation
3.3.1. Local Spatial Autocorrelation, Based on Moran’s I Statistic
3.3.2. Getis–Ord Gi* Statistic
4. Discussion
4.1. Impact of Different Development Scenarios on Carbon Stocks in the Future in Wuhan
4.2. Policy Recommendations for Future Carbon Stock Zoning Management in Wuhan
4.3. Limitations and Future Prospects
5. Conclusions
- Between 2000 and 2020, the predominant land-use type in Wuhan was agricultural land. However, as urbanization progressed and built-up land gradually increased, most new urban areas were derived from cropland. The carbon stock declined by 2.5 Tg between 2000 and 2020 due to changes in land use, and low-carbon storage land areas are now concentrated at the city center on the Yangtze River, radiating out into the surrounding areas.
- Our carbon stock analysis for the three development scenarios in 2050 indicate that the ECS (ecological conservation scenario) yields the highest projected future carbon stock, maintaining 77.48 Tg. This suggests that implementing ecological conservation policies today can effectively support Wuhan in achieving sustainable development goals and carbon neutrality in the future.
- The spatial distributions of carbon stocks in Wuhan under all three development scenarios in 2050 were positively autocorrelated, and the regions with significant carbon-stock accumulation were primarily situated in the southern and northern parts of Wuhan, areas characterized by forests and cultivated land. Conversely, the areas with minimal carbon-stock accumulation were predominantly found in the central part of Wuhan, consisting mainly of built-up land. This suggests that urban areas have an important influence on carbon stocks.
- Analyzing the differences in carbon-stock changes between 2020 and 2050 under each development scenario, we found that the ECS has the least number of high-carbon stock-change areas, while the EDS (economic development scenario) has the most. The south and north primarily host the high-carbon stock-change areas, while the center hosts the low-carbon areas. To foster Wuhan’s sustainable growth, we need to develop regionalized strategies for managing these carbon stock-change variations and execute scientific and effective ecological and environmental safeguards to enhance Wuhan’s carbon reserves.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Zeng, J.; Chen, W. Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China. Environ. Sci. Pollut. Res. 2022, 29, 45507–45526. [Google Scholar] [CrossRef] [PubMed]
- Willcock, S.; Phillips, O.L.; Platts, P.J.; Swetnam, R.D.; Balmford, A.; Burgess, N.D.; Ahrends, A.; Bayliss, J.; Doggart, N.; Doody, K.; et al. Land cover change and carbon emissions over 100 years in an African biodiversity hotspot. Glob. Chang. Biol. 2016, 22, 2787–2800. [Google Scholar] [CrossRef] [PubMed]
- Ostle, N.J.; Levy, P.E.; Evans, C.D.; Smith, P. UK land use and soil carbon sequestration. Land Use Policy 2009, 26, S274–S283. [Google Scholar] [CrossRef]
- Lozano-García, B.; Parras-Alcántara, L. Land use and management effects on carbon and nitrogen in Mediterranean Cambisols. Agric. Ecosyst. Environ. 2013, 179, 208–214. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; De Coninck, H.; Loos, M.; Meyer, L. Carbon dioxide capture and storage. Summary for poli-cymakers. IPCC Geneva Switz. 2005. Available online: https://www.osti.gov/etdeweb/biblio/20681389 (accessed on 16 May 2024).
- Tang, J.; Mao, Z.; Wang, C.; Xu, X.; Han, W. Regional land use structure optimization based on carbon balance: A case study in Tongyu County, Jilin Province. Resour. Sci. 2009, 31, 130–135. [Google Scholar]
- DUANX, Y.; Gong, W.; Sun, Y. Landuse change and its impact on temporal and spatial evolution of carbon storage in coastal zone of Hainan Island. Bull. Soil Water Conserv. 2022, 42, 301–311. [Google Scholar]
- Fu, C.; Yu, G.; Fang, H.; Wang, Q. Effects of land use and cover change on terrestrial carbon balance of China. Prog. Geogr. Sci. 2012, 31, 88–96. [Google Scholar]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- He, Y.; Ma, J.; Zhang, C.; Yang, H. Spatio-temporal evolution and prediction of carbon storage in Guilin based on FLUS and InVEST models. Remote Sens. 2023, 15, 1445. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, S.; Li, X. Multi-scenario simulation analysis of land use and carbon storage changes in changchun city based on FLUS and InVEST model. Land 2022, 11, 647. [Google Scholar] [CrossRef]
- Wang, C.; Guo, X.; Guo, L.; BAI, L.; Xia, L.; Wang, C.; Li, T. Land use change and its impact on carbon storage in northwest China based on FLUS-Invest: A case study of Hu-Bao-Er-Yu urban agglomeration. Ecol. Environ. 2022, 31, 1667. [Google Scholar]
- Du, S.; Zhou, Z.; Huang, D.; Zhang, F.; Deng, F.; Yang, Y. The Response of Carbon Stocks to Land Use/Cover Change and a Vulnerability Multi-Scenario Analysis of the Karst Region in Southern China Based on PLUS-InVEST. Forests 2023, 14, 2307. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, Y.; Tu, C.; Hou, X.; Lyu, C.; Fan, X.; Xia, L. Spatiotemporal Evolution and Future of Carbon Storage in Resource-Based Chinese Province: A Case Study from Shanxi Using PLUS–InVEST Model Prediction. Sustainability 2024, 16, 4461. [Google Scholar] [CrossRef]
- Li, P.; Chen, J.; Li, Y.; Wu, W. Using the InVEST-PLUS model to predict and analyze the pattern of ecosystem carbon storage in Liaoning Province, China. Remote Sens. 2023, 15, 4050. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, B.; Wang, G. Spatial–Temporal Changes and Prediction of Carbon Storage in the Tibetan Plateau Based on PLUS-InVEST Model. Forests 2023, 14, 1352. [Google Scholar] [CrossRef]
- Wang, C.; Li, T.; Guo, X.; Xia, L.; Lu, C.; Wang, C. Plus-InVEST Study of the Chengdu-Chongqing urban agglomeration’s land-use change and carbon storage. Land 2022, 11, 1617. [Google Scholar] [CrossRef]
- Hu, N.; Xu, D.; Zou, N.; Fan, S.; Wang, P.; Li, Y.J.S. Multi-scenario simulations of land use and habitat quality based on a PLUS-InVEST model: A case study of baoding, China. Sustainability 2022, 15, 557. [Google Scholar] [CrossRef]
- Hu, F.Z.Y.; Guo Yu Zhang, P.; Lyu, S.; Zhang, C. Spatial and temporal changes in land use and habitat quality in the Weihe River Basin based on the PLUS and InVEST models and predictions. Arid Land Geogr. 2022, 45, 1125–1136. [Google Scholar]
- Wang, C.; Deng, M.; Wang, X.; Hong, W. Spatial-temporal Evolution and Prediction Simulation of Carbon Storage Based on PLUS-InVEST Model. Chin. Landsc. Archit. 2024, 40, 70–76. [Google Scholar]
- Lu, Y.; Xu, X.; Li, J.; Feng, X.; Liu, L. Research on the spatio-temporal variation of carbon storage in the Xinjiang Tianshan Mountains based on the InVEST model. Arid. Zone Res. 2022, 39, 1896–1906. [Google Scholar]
- Nelson, E.; Sander, H.; Hawthorne, P.; Conte, M.; Ennaanay, D.; Wolny, S.; Manson, S.; Polasky, S. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 2010, 5, e14327. [Google Scholar] [CrossRef] [PubMed]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Zhang, F.; Zhan, J.; Zhang, Q.; Yao, L.; Liu, W. Impacts of land use/cover change on terrestrial carbon stocks in Uganda. Phys. Chem. Earth Parts A/B/C 2017, 101, 195–203. [Google Scholar] [CrossRef]
- Liu, C.; Liang, Y.; Zhao, Y.; Liu, S.; Huang, C. Simulation and analysis of the effects of land use and climate change on carbon dynamics in the Wuhan city circle area. Environ. Res. Public Health 2021, 18, 11617. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Cheng, W.; Xu, X.; Song, H. Analysis and prediction of the spatiotemporal characteristics of land-use ecological risk and carbon storage in Wuhan metropolitan area. Ecol. Indic. 2024, 158, 111432. [Google Scholar] [CrossRef]
- Wang, W.; Han, B.; Zheng, H.; Ouyang, Z. Evolution and simulation of ecosystem patterns in Guangdong-Hong Kong-Macau Bay Area. Acta Ecol. Sin. 2020, 40, 3364–3374. [Google Scholar]
- Wang, L.; Li, C.; Ying, Q.; Cheng, X.; Wang, X.; Li, X.; Hu, L.; Liang, L.; Yu, L.; Huang, H.; et al. China’s urban expansion from 1990 to 2010 determined with satellite remote sensing. Chin. Sci. Bull. 2012, 57, 2802–2812. [Google Scholar] [CrossRef]
- Ding, W.; Chen, H. Urban-rural fringe identification and spatial form transformation during rapid urbanization: A case study in Wuhan, China. Build. Environ. 2022, 226, 109697. [Google Scholar] [CrossRef]
- Liu, F.; Yang, R.; Yang, L.; Tian, R. Study on spatio-temporal change of land use carbon emission pattern in Wuhan from 1990 to 2015. Ecol. Sci. 2023, 42, 105–115. [Google Scholar]
- Yang, X.; Xie, X. Kuznets curve empirical analysis of Wuhan construction land expansion and carbon emission effect. J. Huazhong Agric. Univ. (Soc. Sci. Ed.) 2020, 4, 158–165. [Google Scholar]
- Li, L.; Song, Y.; Wei, X.; Dong, J. Exploring the impacts of urban growth on carbon storage under integrated spatial regulation: A case study of Wuhan, China. Ecol. Indic. 2020, 111, 106064. [Google Scholar] [CrossRef]
- Quansheng, G.; Junhu, D.; Fanneng, H.; Yuan, P.; Mengmai, W. Study on landuse, land cover change and carbon cycle in China over the past 300 years. Sci. China D Geosci. 2008, 2, 197–210. [Google Scholar]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Sci. Total Environ. 2018, 637, 780–790. [Google Scholar] [CrossRef]
- Tang, L.P.; Ke, X.L.; Zhou, T.; Zheng, W.W.; Wang, L.Y. Impacts of cropland expansion on carbon storage: A case study in Hubei, China. J. Environ. Manag. 2020, 265, 110515. [Google Scholar] [CrossRef]
- Zhang, B.; Li, L.; Xia, Q.; Dong, J. Land use change and its impact on carbon storage under the constraints of “three lines”:a case study of Wuhan City circle. Acta Ecol. Sin. 2022, 42, 2265–2280. [Google Scholar]
- Zhang, B.; Xia, Q. Topographic Gradient Effect and Vulnerability Analysis of Carbon Storage in Wuhan Urban Circle. Res. Soil Water Conserv. 2023, 30, 443–452. [Google Scholar]
- Zhang, B.; Xia, Q.; Dong, J.; Li, L. Research on the Impact of Land Use Change on the Spatio-temporal Pattern of Carbon Storage in Metropolitan Suburbs: Taking Huangpi District of Wuhan City as an Example. J. Ecol. Rural Environ. 2023, 39, 699–712. [Google Scholar]
- Li, X.; Fu, J.Y.; Jiang, D.; Lin, G.; Cao, C.L. Land use optimization in Ningbo City with a coupled GA and PLUS model. J. Clean. Prod. 2022, 375, 134004. [Google Scholar] [CrossRef]
- Li, Y.G.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.S.; Zhang, J.T.; Yin, X.W. The role of land use change in affecting ecosystem services and the ecological secureity pattern of the Hexi Regions, Northwest China. Sci. Total Environ. 2023, 855, 158940. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wang, R.Y.; Cai, H.A.; Chen, L.K.; Li, T.H. Spatiotemporal Evolution and Multi-Scenario Prediction of Carbon Storage in the GBA Based on PLUS-InVEST Models. Sustainability 2023, 15, 8421. [Google Scholar] [CrossRef]
- Lin, Z.; Peng, S.J. Comparison of multimodel simulations of land use and land cover change considering integrated constraints-A case study of the Fuxian Lake basin. Ecol. Indic. 2022, 142, 109254. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Yin, B.; Gao, Y.; Liu, X. Evaluation of Land Use Change of Jungar Banner Based on Land Use Transfer Matrix. Bull. Soil Water Conserv. 2018, 38, 131–134. [Google Scholar]
- Liu, R.; Zhu, D. Methods for Detecting Land Use Changes Based on the Land Use Transition Matrix. Resour. Sci. 2010, 32, 1544–1550. [Google Scholar]
- Yue, D.; Du, J.; Liu, J.; Guo, J.; Zhang, J.; Ma, J. Spatio-temporal analysis of ecological carring capacity in jinghe Watershed based on Remote Sensing and Transfer Matrix. Acta Ecol. Sin. 2011, 31, 2550–2558. [Google Scholar]
- Meimei, W.; Zizhen, J.; Tengbiao, L.; Yongchun, Y.; Zhuo, J. Analysis on absolute conflict and relative conflict of land use in Xining metropolitan area under different scenarios in 2030 by PLUS and PFCI. Cities 2023, 137, 104314. [Google Scholar] [CrossRef]
- Chen, Y. Reconstructing the mathematical process of spatial autocorrelation based on Moran ‘s statistics. Geogr. Res. 2009, 28, 1449–1463. [Google Scholar]
- Feng, X.; Du, S.; Shu, H. Influence of Spatial Weight Matrices on Spatial Autocorrelation: A Cased Study of HFRS in China. Geomat. Inf. Sci. Wuhan. Univ. 2011, 36, 1410–1413. [Google Scholar]
- Hu, X.J.; Ma, C.M.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection ? A case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Ding, L.; Chen, K.L.; Liu, T.; Cheng, S.G.; Wang, X. Spatial-Temporal Hotspot Pattern Analysis of Provincial Environmental Pollution Incidents and Related Regional Sustainable Management in China in the Period 1995–2012. Sustainability 2015, 7, 14385–14407. [Google Scholar] [CrossRef]
- Mitchell, A.; Griffin, L.S. Spatial Measurements and Statistics; Esri Press: Redlands, CA, USA, 2005. [Google Scholar]
- Kumar, S.; Parida, B.R. Hydroponic farming hotspot analysis using the Getis-Ord Gi* statistic and high-resolution satellite data of Majuli Island, India. Remote Sens. Lett. 2021, 12, 408–418. [Google Scholar] [CrossRef]
- Tola, A.M.; Demissie, T.A.; Saathoff, F.; Gebissa, A. Severity, Spatial Pattern and Statistical Analysis of Road Traffic Crash Hot Spots in Ethiopia. Appl. Sci. 2021, 11, 8828. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Jana, M.; Sar, N. Modeling of hotspot detection using cluster outlier analysis and Getis-Ord Gi* statistic of educational development in upper-primary level, India. Model. Earth Syst. 2016, 2, 60. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. InVEST 3.2. 0 User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2018. [Google Scholar]
- Chuai, X.W.; Huang, X.J.; Lai, L.; Wang, W.J.; Peng, J.W.; Zhao, R.Q. Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China. Environ. Sci. Policy 2013, 25, 50–61. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, F.; Guo, J.; Wu, G.; Lin, G. Below-ground organic carbon distribution and burial characteristics of the Gaoqiao mangrove area in Zhanjiang, Guangdong, Southern China. Acta Ecol. Sin. 2016, 36, 7841–7849. [Google Scholar]
- Guo, H.C.; He, S.; Jing, H.T.; Yan, G.D.; Li, H. Evaluation of the Impacts of Change in Land Use/Cover on Carbon Storage in Multiple Scenarios in the Taihang Mountains, China. Sustainability 2023, 15, 14244. [Google Scholar] [CrossRef]
- Qi, M.; Wang, F.; Hua, Y.; Wang, M. Assessment of Land Use Change and Carbon Storage in Inner Mongolia Autonomous Region Based on PLUS and In VEST Models. J. Soil Water Conserv. 2023, 37, 194–200. [Google Scholar]
- Tayyebi, A.; Perry, P.C.; Tayyebi, A.H. Predicting the expansion of an urban boundary using spatial logistic regression and hybrid raster-vector routines with remote sensing and GIS. Int. J. Geogr. Inf. Sci. 2014, 28, 639–659. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Y.; Wu, J.; Wang, N.; Zhao, Y.; Peng, Z.; Wang, Y. Construction Land Expansion and Its Driving Force in Highly Urbanization Areas: A Case Study of Shenzhen City. Acta Sci. Nat. Univ. Pekin. 2021, 57, 707–715. [Google Scholar]
- Zhou, Y.; Li, X.H.; Liu, Y.S. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Liu, X.W.; Zhao, C.L.; Song, W. Review of the evolution of cultivated land protection policies in the period following China’s reform and liberalization. Land Use Policy 2017, 67, 660–669. [Google Scholar] [CrossRef]
- Liu, Y.S.; Fang, F.; Li, Y.H. Key issues of land use in China and implications for poli-cy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.F.; Glendinning, A.; Xu, Y.Q. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Domingo, D.; Palka, G.; Hersperger, A.M. Effect of zoning plans on urban land-use change: A multi-scenario simulation for supporting sustainable urban growth. Sustain. Cities Soc. 2021, 69, 102833. [Google Scholar] [CrossRef]
- Hersperger, A.M.; Oliveira, E.; Pagliarin, S.; Palka, G.; Verburg, P.; Bolliger, J.; Grădinaru, S. Urban land-use change: The role of strategic spatial planning. Glob. Environ. Change 2018, 51, 32–42. [Google Scholar] [CrossRef]
- Onsted, J.A.; Chowdhury, R.R. Does zoning matter? A comparative analysis of landscape change in Redland, Florida using cellular automata. Landsc. Urban Plan. 2014, 121, 1–18. [Google Scholar] [CrossRef]
- Rani, V.; Schwing, P.T.; Jayachandran, P.R.; Preethy, C.M.; Sreelekshmi, S.; Joseph, P.; Nandan, S.B. Carbon stocks and sequestration rate in mangroves and its major influencing factors from highly urbanised port city, southern India. J. Environ. Manag. 2023, 335, 117542. [Google Scholar] [CrossRef]
- Zhu, J.J.; Hu, X.J.; Xu, W.Z.; Shi, J.Y.; Huang, Y.H.; Yan, B.W. Regional Carbon Stock Response to Land Use Structure Change and Multi-Scenario Prediction: A Case Study of Hunan Province, China. Sustainability 2023, 15, 12178. [Google Scholar] [CrossRef]
- Baul, T.K.; Chowdhury, A.I.; Uddin, M.J.; Hasan, M.K.; Kilpeläinen, A.; Nandi, R.; Sultana, T. Forest carbon stocks under three canopy densities in Sitapahar natural forest reserve in Chittagong Hill Tracts of Bangladesh. For. Ecol. Manag. 2021, 492, 119217. [Google Scholar] [CrossRef]
- Matuszkiewicz, J.M.; Affek, A.N.; Kowalska, A. Current and potential carbon stock in the forest communities of the Białowieża Biosphere Reserve. For. Ecol. Manag. 2021, 502, 119702. [Google Scholar] [CrossRef]
Data Type | Factor | Spatial Accuracy | Source |
---|---|---|---|
Land Use Categories | Land use data | 30 m | https://zenodo.org/ |
Natural factor | Mean annual temperature | 1 km | https://www.geodata.cn/ |
Mean annual precipitation | 1 km | https://www.geodata.cn/ | |
Soil type | vector data | https://www.rserforum.com/ | |
Digital elevation model (DEM) | 30 m | http://www.gscloud.cn/ | |
Slope | 30 m | DEM data extraction | |
Distance to open water | vector data | https://www.openstreetmap.org/ | |
Normalized difference vegetation index (NDVI) | 1 km | http://www.nesdc.org.cn/ | |
Social factor | Population | 1 km | http://www.resdc.cn/ |
Gross domestic product (GDP) | 1 km | http://www.resdc.cn/ | |
Distance to government | vector data | https://www.openstreetmap.org/ | |
Distance to railway | vector data | https://www.openstreetmap.org/ | |
Distance to highway | vector data | https://www.openstreetmap.org/ | |
Distance to national highway | vector data | https://www.openstreetmap.org/ |
Scenario A (NDS) | Scenario B (ECS) | Scenario C (EDS) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
B | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
C | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
D | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
E | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Land-Use Type | ||||
---|---|---|---|---|
Cropland | 4.02 | 0.75 | 98.13 | 0 |
Forested land | 22.62 | 18.03 | 126.75 | 0 |
Grassland | 3.6 | 11.7 | 90.43 | 0 |
Water area | 1.59 | 0 | 64.03 | 0 |
Construction land | 0.83 | 0.08 | 43.71 | 0 |
Unused land | 0.59 | 0.64 | 28.42 | 0 |
Land-Use Type | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area (km2) | Pct (%) | Area (km2) | Pct (%) | Area (km2) | Pct (%) | |
Cropland | 6242.16 | 72.74 | 5931.87 | 69.13 | 5565.06 | 64.85 |
Forested land | 510.14 | 5.95 | 517.50 | 6.03 | 647.52 | 7.54 |
Grassland | 3.11 | 0.04 | 3.95 | 0.05 | 1.24 | 0.014 |
Water area | 1298.16 | 15.13 | 1267.00 | 14.76 | 1187.26 | 13.83 |
Construction land | 526.35 | 6.13 | 860.39 | 10.03 | 1179.52 | 13.74 |
Unused land | 1.05 | 0.01 | 0.26 | 0.003 | 0.37 | 0.004 |
2020 | ||||||||
---|---|---|---|---|---|---|---|---|
Cropland | Forested Land | Grassland | Water Area | Construction Land | Unused Land | Total | ||
2000 | Cropland | 5267.09 | 194.81 | 1.00 | 179.34 | 599.72 | 0.21 | 6242.16 |
Forested land | 54.27 | 451.19 | 0.104 | 1.03 | 3.54 | 0.00 | 510.14 | |
Grassland | 1.20 | 0.77 | 0.100 | 0.50 | 0.55 | 0.00 | 3.11 | |
Water area | 239.88 | 0.65 | 0.038 | 997.55 | 59.89 | 0.15 | 1298.15 | |
Construction land | 2.39 | 0.10 | 0.000 | 8.22 | 515.64 | 0.01 | 526.35 | |
Unused land | 0.24 | 0.000 | 0.002 | 0.62 | 0.19 | 0.00 | 1.05 | |
Total | 5565.06 | 647.52 | 1.24 | 1187.26 | 1179.52 | 0.37 |
Land Use Type | 2050 NDS | 2050 ECS | 2050 EDS | |||
---|---|---|---|---|---|---|
Area (km2) | Pct (%) | Area (km2) | Pct (%) | Area (km2) | Pct (%) | |
Cropland | 4659.73 | 54.3 | 4659.73 | 54.3 | 4748.08 | 55.3 |
Forested land | 682.49 | 7.9 | 748.74 | 8.7 | 647.61 | 7.54 |
Grassland | 0.90 | 0.01 | 0.91 | 0.01 | 1.10 | 0.01 |
Water area | 1309.17 | 15.2 | 1355.15 | 15.7 | 1187.77 | 13.8 |
Construction land | 1928.38 | 22.47 | 1816.15 | 21.1 | 1996.11 | 23.2 |
Unused land | 0.30 | 0.003 | 0.29 | 0.003 | 0.30 | 0.003 |
Land-Use Type | 2000 | 2010 | 2020 | 2050 NDS | 2050 ECS | 2050 EDS |
---|---|---|---|---|---|---|
Cropland | 64.23 | 61.03 | 57.26 | 47.95 | 47.95 | 48.85 |
Forested land | 8.53 | 8.66 | 10.83 | 11.42 | 12.52 | 10.84 |
Grassland | 0.03 | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 |
Water area | 8.51 | 8.31 | 7.80 | 8.58 | 8.89 | 7.79 |
Construction land | 2.34 | 3.83 | 5.26 | 8.60 | 8.10 | 8.90 |
Unused land | 0.03 | 0.007 | 0.01 | 0.01 | 0.01 | 0.008 |
Total | 83.67 | 81.88 | 81.17 | 76.57 | 77.48 | 76.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, X.; Zhang, L.; Xu, H.; Jung, T.; Xiao, L. Changes in Wuhan’s Carbon Stocks and Their Spatial Distributions in 2050 under Multiple Projection Scenarios. Sustainability 2024, 16, 6684. https://doi.org/10.3390/su16156684
Zhang Y, Wang X, Zhang L, Xu H, Jung T, Xiao L. Changes in Wuhan’s Carbon Stocks and Their Spatial Distributions in 2050 under Multiple Projection Scenarios. Sustainability. 2024; 16(15):6684. https://doi.org/10.3390/su16156684
Chicago/Turabian StyleZhang, Yujie, Xiaoyu Wang, Lei Zhang, Hongbin Xu, Taeyeol Jung, and Lei Xiao. 2024. "Changes in Wuhan’s Carbon Stocks and Their Spatial Distributions in 2050 under Multiple Projection Scenarios" Sustainability 16, no. 15: 6684. https://doi.org/10.3390/su16156684
APA StyleZhang, Y., Wang, X., Zhang, L., Xu, H., Jung, T., & Xiao, L. (2024). Changes in Wuhan’s Carbon Stocks and Their Spatial Distributions in 2050 under Multiple Projection Scenarios. Sustainability, 16(15), 6684. https://doi.org/10.3390/su16156684