Content-Length: 188907 | pFad | https://www.academia.edu/88035642/Illuminating_the_dark_matter_in_metabolomics
Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2015, Proceedings of the National Academy of Sciences of the United States of America
…
2 pages
1 file
AI-generated Abstract
The paper discusses the challenges associated with metabolomics, particularly in identifying the vast amount of uncharacterized chemical data referred to as 'dark matter.' Currently, only a small percentage of spectra from mass spectrometry can be annotated due to lack of references. The authors highlight the development of a computational tool, CSI:FingerID, designed to improve the annotation of metabolites by linking mass spectral data to known chemical structures. The advancement of such tools is crucial for the field of metabolomics to reach the level of efficiency and productivity found in genomics, thus enabling deeper exploration of the chemical compounds in biological systems.
BMC bioinformatics, 2006
Metabolomic studies are targeted at identifying and quantifying all metabolites in a given biological context. Among the tools used for metabolomic research, mass spectrometry is one of the most powerful tools. However, metabolomics by mass spectrometry always reveals a high number of unknown compounds which complicate in depth mechanistic or biochemical understanding. In principle, mass spectrometry can be utilized within strategies of de novo structure elucidation of small molecules, starting with the computation of the elemental composition of an unknown metabolite using accurate masses with errors <5 ppm (parts per million). However even with very high mass accuracy (<1 ppm) many chemically possible formulae are obtained in higher mass regions. In automatic routines an additional orthogonal filter therefore needs to be applied in order to reduce the number of potential elemental compositions. This report demonstrates the necessity of isotope abundance information by mathem...
2021
In the context of untargeted metabolomics, molecular networking is a popular and efficient tool which organizes and simplifies mass spectrometry fragmentation data (LC-MS/MS), by clustering ions based on a cosine similarity score. However, the nature of the ion species is rarely taken into account, causing redundancy as a single compound may be present in different forms throughout the network. Taking advantage of the presence of such redundant ions, we developed a new method named MolNotator. Using the different ion species produced by a molecule during ionization (adducts, dimers, trimers, in-source fragments), a predicted molecule node (or neutral node) is created by triangulation, and ultimately computing the associated molecule’s calculated mass. These neutral nodes provide researchers with several advantages. Firstly, each molecule is then represented in its ionization context, connected to all produced ions and indirectly to some coeluted compounds, thereby also highlighting ...
Current bioinformatics, 2012
Biological systems are increasingly being studied in a holistic manner, using omics approaches, to provide quantitative and qualitative descriptions of the diverse collection of cellular components. Among the omics approaches, metabolomics, which deals with the quantitative global profiling of small molecules or metabolites, is being used extensively to explore the dynamic response of living systems, such as organelles, cells, tissues, organs and whole organisms, under diverse physiological and pathological conditions. This technology is now used routinely in a number of applications, including basic and clinical research, agriculture, microbiology, food science, nutrition, pharmaceutical research, environmental science and the development of biofuels. Of the multiple analytical platforms available to perform such analyses, nuclear magnetic resonance and mass spectrometry have come to dominate, owing to the high resolution and large datasets that can be generated with these techniques. The large multidimensional datasets that result from such studies must be processed and analyzed to render this data meaningful. Thus, bioinformatics tools are essential for the efficient processing of huge datasets, the characterization of the detected signals, and to align multiple datasets and their features. This paper provides a state-of-the-art overview of the data processing tools available, and reviews a collection of recent reports on the topic. Data conversion, pre-processing, alignment, normalization and statistical analysis are introduced, with their advantages and disadvantages, and comparisons are made to guide the reader.
TrAC Trends in Analytical Chemistry, 2016
Mass spectrometry-based metabolomics is now widely used to obtain new insights into human, plant and microbial biochemistry, drug and biomarker discovery, nutrition research and food control. Despite this great shared interest, identifying and characterizing the structure of metabolites has become a major bottleneck for converting raw mass spectrometric data into biological knowledge. In this regard, comprehensive and wellannotated MS-based spectral databases play a key role towards converting raw spectral data into metabolite annotations and thus biological knowledge. The main characteristics of the mass spectral databases currently used in MS-based metabolomics, are reviewed in this paper, underlining the advantages and limitations of each. Extending this, the overlap of compounds with MS n (n2) spectra from authentic chemical standards in most public and commercial databases has been calculated for the first time. Finally, future prospects for mass spectral databases are discussed in terms of the needs posed by novel applications and instrumental advancements.
Bioinformatics, 2004
Metabolomics, in particular gas chromatography-mass spectrometry (GC-MS) based metabolite profiling of biological extracts, is rapidly becoming one of the cornerstones of functional genomics and systems biology. Metabolite profiling has profound applications in discovering the mode of action of drugs or herbicides, and in unravelling the effect of altered gene expression on metabolism and organism performance in biotechnological applications. As such the technology needs to be available to many laboratories. For this, an open exchange of information is required, like that already achieved for transcript and protein data. One of the key-steps in metabolite profiling is the unambiguous identification of metabolites in highly complex metabolite preparations from biological samples. Collections of mass spectra, which comprise frequently observed metabolites of either known or unknown exact chemical structure, represent the most effective means to pool the identification efforts currently performed in many laboratories around the world. Here we present GMD, The Golm Metabolome Database, an open access metabolome database, which should enable these processes. GMD provides public access to custom mass spectral libraries, metabolite profiling experiments as well as additional information and tools, e.g. with regard to methods, spectral information or compounds. The main goal will be the representation of an exchange platform for experimental research activities and bioinformatics to develop and improve metabolomics by multidisciplinary cooperation.
Analytical chemistry, 2017
Annotation of metabolites remains a major challenge in liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics. The current gold standard for metabolite identification is to match the detected feature with an authentic standard analyzed on the same equipment and using the same method as the experimental samples. However, there are substantial practical challenges in applying this approach to large data sets. One widely used annotation approach is to search spectral libraries in reference databases for matching metabolites; however, this approach is limited by the incomplete coverage of these libraries. An alternative computational approach is to match the detected features to candidate chemical structures based on their mass and predicted fragmentation pattern. Unfortunately, both of these approaches can match multiple identities with a single feature. Another issue is that annotations from different tools often disagree. This paper presents a novel LC-MS data ...
BMC Bioinformatics, 2009
Background: Metabolome analysis with GC/MS has meanwhile been established as one of the "omics" techniques. Compound identification is done by comparison of the MS data with compound libraries. Mass spectral libraries in the field of metabolomics ought to connect the relevant mass traces of the metabolites to other relevant data, e.g. formulas, chemical structures, identification numbers to other databases etc. Since existing solutions are either commercial and therefore only available for certain instruments or not capable of storing such information, there is need to provide a software tool for the management of such data.
Analytical chemistry, 2011
Data analysis in metabolomics is currently a major challenge, particularly when large sample sets are analyzed. Herein, we present a novel computational platform entitled MetSign for highresolution mass spectrometry-based metabolomics. By converting the instrument raw data into mzXML format as its input data, MetSign provides a suite of bioinformatics tools to perform raw data deconvolution, metabolite putative assignment, peak list alignment, normalization, statistical significance tests, unsupervised pattern recognition, and time course analysis. MetSign uses a modular design and an interactive visual data mining approach to enable efficient extraction of useful patterns from data sets. Analysis steps, designed as containers, are presented with a wizard for the user to follow analyses. Each analysis step might contain multiple analysis procedures and/or methods and serves as a pausing point where users can interact with the system to review the results, to shape the next steps, and to return to previous steps to repeat them with different methods or parameter settings. Analysis of metabolite extract of mouse liver with spiked-in acid standards shows that MetSign outperforms the existing publically available software packages. MetSign has also been successfully applied to investigate the regulation and time course trajectory of metabolites in hepatic liver.
Mapping the chemical space of compounds to chemical structures remains a challenge in metabolomics. Despite the advancements in untargeted liquid chromatography-mass spectrometry (LC-MS) to achieve a high-throughput profile of metabolites from complex biological resources, only a small fraction of these metabolites can be annotated with confidence. Many novel computational methods and tools have been developed to enable chemical structure annotation to known and unknown compounds such asin silicogenerated spectra and molecular networking. Here, we present an automated and reproducibleMetabolomeAnnotationWorkflow (MAW) for untargeted metabolomics data to further facilitate and automate the complex annotation by combining tandem mass spectrometry (MS2) input data pre-processing, spectral and compound database matching with computational classification, andin silicoannotation. MAW takes the LC-MS2spectra as input and generates a list of putative candidates from spectral and compound da...
PloS one, 2009
Calculating the metabolome size of species by genome-guided reconstruction of metabolic pathways misses all products from orphan genes and from enzymes lacking annotated genes. Hence, metabolomes need to be determined experimentally. Annotations by mass spectrometry would greatly benefit if peer-reviewed public databases could be queried to compile target lists of structures that already have been reported for a given species. We detail current obstacles to compile such a knowledge base of metabolites. As an example, results are presented for rice. Two rice (oryza sativa) subspecies have been fully sequenced, oryza japonica and oryza indica. Several major small molecule databases were compared for listing known rice metabolites comprising PubChem, Chemical Abstracts, Beilstein, Patent databases, Dictionary of Natural Products, SetupX/BinBase, KNApSAcK DB, and finally those databases which were obtained by computational approaches, i.e. RiceCyc, KEGG, and Reactome. More than 5,000 sm...
Academia Mental Health and Well-Being, 2024
Nazariyat: Journal for the History of Islamic Philosophy and Sciences, 2019
Circular Economy and Sustainability/Circular economy and sustainability, 2024
Business Ethics and Leadership
ijels aiac , 2024
International Journal of Older People Nursing, 2012
Turk Turizm Arastirmalari Dergisi, 2020
Evolution: Education and Outreach, 2011
Dilemas contemporáneos: Educación, política y valores, 2021
Health Informatics Journal, 2019
Arab Journal Of Applied Linguistics, 2024
IET Irish Signals and Systems Conference (ISSC 2009), 2009
Journal of Computer and System Sciences, 2012
Fetched URL: https://www.academia.edu/88035642/Illuminating_the_dark_matter_in_metabolomics
Alternative Proxies: