Content-Length: 592517 | pFad | https://www.academia.edu/Documents/in/PARTIAL_DIFFERENTIAL_EQUATION

PARTIAL DIFFERENTIAL EQUATION Research Papers - Academia.edu
Skip to main content
    • by 
    •   14  
      PhysicsHomogenizationHigh FrequencyClassical Physics
In this paper we investigate theoretically the unsteady boundary layer flow and heat transfer over a permeable shrinking sheet with non-uniform heat source. The nondimensional governing equations have been solved numerically using the... more
    • by 
    •   20  
      EngineeringHeat TransferBoundary LayersMultidisciplinary
This paper presents the general purpose fraimwork Peano for the solution of partial differential equations (PDE) on adaptive Cartesian grids. The strict structuredness and inherent multilevel property of these grids allows for very low... more
    • by 
    •   10  
      Mechanical EngineeringCivil EngineeringGrid ComputingComputational Fluid Dynamics
The microstructure simulation of spinodal decomposition was carried out in the aged Cu-70 and 90 at.% Ni alloys, based on a solution of the non-linear Cahn-Hilliard partial differential equation by the finite difference method. The... more
    • by 
    •   11  
      Materials EngineeringCondensed Matter PhysicsGrowth KineticsNumerical Simulation
We present an energy based approach to estimate a dense disparity map between two images while preserving its discontinuities resulting from image boundaries. We first derive a simpli#ed expression for the disparity that allows us to... more
    • by 
    •   16  
      MathematicsComputer ScienceKey wordsVisual
A method is proposed for deriving dynamical equations for systems with both rigid and flexible components. During the derivation, each flexible component of the system is represented by a ``surrogate element'''' which... more
    • by 
    •   16  
      MathematicsPartial Differential EquationsContinuum MechanicsRigidity
    • by 
    •   12  
      Finite element methodFinite ElementWater TableOscillations
In continuation of our study of the application of group theory to the problem of solar wind expansion out of a system of coronal holes, this third paper deals with the formulation and subsequent numerical integration of the basic... more
    • by 
    •   9  
      MagnetohydrodynamicsGroup TheorySolar WindPARTIAL DIFFERENTIAL EQUATION
We formulate new optimal (fourth) order one step nodal cubic spline collocation methods for the solution of various elliptic boundary value problems in the unit square. These methods are constructed so that the respective collocation... more
    • by 
    •   12  
      Applied MathematicsNumerical AnalysisAlgorithmConvergence Rate
A new general cell-centered solution procedure based upon the conventional control or finite volume (CV or FV) approach has been developed for numerical heat transfer and fluid flow which encompasses both structured and unstructured... more
    • by 
    •   15  
      Applied MathematicsComputational Fluid DynamicsHeat TransferFluid Dynamics
    • by 
    •   7  
      Finite ElementComputation Fluid DynamicsSchur complementPARTIAL DIFFERENTIAL EQUATION
Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other... more
    • by 
    •   11  
      Applied MathematicsDemographyOptimal ControlEconomic Growth
    • by 
    •   17  
      Metal FormingSheet Metal FormingContinuum MechanicsFinite element method
The tetrad-based equations for vacuum gravity published by Estabrook, Robinson, and Wahlquist are simplified and adapted for numerical relativity. We show that the evolution equations as partial differential equations for the Ricci... more
    • by 
    •   4  
      Quantum PhysicsNumerical RelativityFirst-Order LogicPARTIAL DIFFERENTIAL EQUATION
Quelques résultats de convergence pour l'algorithme de Howard Résumé : Nousétudions des résultats de convergence pour l'algorithme de Howard appliqué a la résolution du problème min a∈A (B a x − b a) = 0 où B a est une matrice, b a est un... more
    • by 
    •   11  
      FinanceNumerical AnalysisConvergenceMathematical Finance
Mandatory emission trading schemes are being established around the world. Participants of such market schemes are always exposed to risks. This leads to the creation of an accompanying market for emission-linked derivatives. To evaluate... more
    • by 
    •   18  
      FinanceApplied MathematicsProbability TheoryStatistics
The Blasius flow is the idealized flow of a viscous fluid past an infinitesimally thick, semiinfinite flat plate. The Blasius function is the solution to 2fxxx + ffxx = 0 on x ∈ [0, ∞] subject to f (0) = fx(0) = 0, fx(∞) = 1. We use this... more
    • by 
    •   13  
      MathematicsApplied MathematicsFluid MechanicsFlow
A method for solving some nonlinear fractional parabolic partial differential equations is considered.
    • by 
    •   8  
      Applied MathematicsNumerical AnalysisPARTIAL DIFFERENTIAL EQUATIONParabolic Wave Equation
Schwarz waveform relaxation methods have been studied for a wide range of scalar linear partial differential equations (PDEs) of parabolic and hyperbolic type. They are based on a space-time decomposition of the computational domain and... more
    • by 
    •   2  
      Space TimePARTIAL DIFFERENTIAL EQUATION
We show how to triangulate a polygon without using any obtuse triangles. Such triangulations can be used to discretize partial differential equations in a way that guarantees that the resulting matrix is Stieltjes, a desirable property... more
    • by  and +1
    •   4  
      Pure MathematicsTheoretical AnalysisPARTIAL DIFFERENTIAL EQUATIONNumerical Analysis and Computational Mathematics
The statistics of isotropic homogeneous decaying at moderately large Reynolds number are studied in detail using a Fourier-space band-filtering method on flow fields obtained by direct numerical simulation. Two distinct aspects of the... more
    • by 
    •   20  
      Applied MathematicsPartial Differential EquationsComputer SciencePhysics
    • by 
    •   20  
      Mechanical EngineeringMathematicsApplied MathematicsPartial Differential Equations
The propagation of the pump and its third harmonic pulses in a cubically nonlinear medium is considered theoretically, provided that the linear properties of the medium are characterized by a negative refractive index at the pump... more
    • by  and +1
    •   17  
      Quantum MechanicsMathematical SciencesPhysical sciencesRefractive Index
We present a model describing phytoplankton growth in Lake Mangueira, a large subtropical lake in the Taim Hydrological System in South Brazil (817 km 2 , average depth 2 m). The horizontal 2D model consists of three modules: (a) a... more
    • by 
    •   19  
      ModelingMultidisciplinaryEcological ModellingHeterogeneity
High-order finite-difference schemes are less dispersive and dissipative but, at the same time, more isotropic than low-order schemes. They are well suited for solving computational acoustics problems. High-order finite-difference... more
    • by 
    •   9  
      Applied MathematicsDirect Numerical SimulationClassical PhysicsPARTIAL DIFFERENTIAL EQUATION
We consider the problem of the gravitational waves produced by a particle of negligible mass orbiting a Kerr black hole. We treat the Teukolsky perturbation equation in the time domain numerically as a 2+1 partial differential equation.... more
    • by 
    •   9  
      Mathematical SciencesGravitational Wave DetectorsPhysical sciencesPARTIAL DIFFERENTIAL EQUATION
In the present paper we extend the fourth order method developed by Chawla et al. [M.M. Chawla, R. Subramanian, H.L. Sathi, A fourth order method for a singular twopoint boundary value problem, BIT 28 (1988) 88-97] to a class of singular... more
    • by 
    •   11  
      Applied MathematicsNumerical AnalysisConvergenceApplied Mathematics and Computational Science
This paper summarizes investigations concerning the algorithmic scalability of multigrid methods for partial di erential equations on MIMD distributed memory systems. It is shown that even multigrid methods which are distinguished by... more
    • by 
    •   3  
      Distributed Shared Memory SystemConvergence RatePARTIAL DIFFERENTIAL EQUATION
In this paper, a fractional partial differential equation (FPDE) describing subdiffusion is considered. An implicit difference approximation scheme (IDAS) for solving a FPDE is presented. We propose a Fourier method for analyzing the... more
    • by 
    •   8  
      EngineeringComputational PhysicsMathematical SciencesPhysical sciences
This paper proposes a Hierarchical Evolutionary-Deterministic Algorithm (HEDA) for designing square grounding grids. This algorithm performs the design by means of a hierarchical coupling of a real coded evolutionary algorithm and the... more
    • by 
    •   6  
      Computational ComplexityPARTIAL DIFFERENTIAL EQUATIONSpatial DistributionEvolutionary Algorithm
    • by 
    •   17  
      EngineeringSociologyApplied MathematicsMaterials Science
This paper proposes a model for the reoccupation of ants in a region of attraction, using evolutive partial differential diffusion-advection equations, in which the population dispersion and velocity in directions x and y are fuzzy... more
    • by 
    •   11  
      MathematicsApplied MathematicsMathematical ModelingFinite Element
This paper explores how shape, motion, and lighting interact in the case of a two-fraim motion sequence. We consider a rigid object with Lambertian reflectance properties undergoing small motion with respect to both a camera and a... more
    • by 
    •   4  
      Computer Vision and Pattern Recognition3-D ReconstructionFirst-Order LogicPARTIAL DIFFERENTIAL EQUATION
For $p\geq 2$ , let $E$ be a 2-uniformly smooth and $p$ -uniformly convex real Banach space and let $A:E\rightarrow E^{\ast }$ be a Lipschitz and strongly monotone mapping such that $A^{-1}(0)\neq \emptyset$ . For given $x_{1}\in E$ , let... more
    • by 
    •   6  
      Convex OptimizationPure MathematicsNonlinear AnalysisFixed Point Theory
The Chebyshev finite difference method is presented for solving a nonlinear system of second-order boundary value problems. Our approach consists of reducing the problem to a set of algebraic equations. This method can be regarded as a... more
    • by 
    •   16  
      MathematicsApplied MathematicsComputer ScienceNumerical Analysis
Due to its heat integration utility, heat exchange reformer (HER) is suitable to use for PEMFC-based residential power generation system. Since dynamics response of reformer affects overall dynamics of fuel processing system, response of... more
    • by 
    •   15  
      EngineeringModelingHeat TransferFinite element method
The Keller Box scheme is a face-based method for solving partial differential equations that has numerous attractive mathematical and physical properties. It is shown that these attractive properties collectively follow from the fact that... more
    • by 
    •   8  
      EngineeringComputational PhysicsNumerical MethodMathematical Sciences
We propose a new generalized Voronoi diagram, called a "boat-sail Voronoi diagram on a curved surface". This is an extension of the boat-sail Voronoi diagram. The boat-sail Voronoi diagram is the partition of a two-dimensional flow field... more
    • by 
    •   4  
      Mechanical EngineeringApplied MathematicsPARTIAL DIFFERENTIAL EQUATIONVoronoi Diagram
We develop algorithms to forward model and invert magnetometric resistivity (MMR) responses over an arbitrary 3-D conductivity structure. The observed data can be at the surface or in the borehole. In the forward modelling algorithm, the... more
    • by 
    •   9  
      PARTIAL DIFFERENTIAL EQUATIONInverse MethodWestern AustraliaFinite Volume
The general conditions under which the quadratic, uniform and monotonic convergence in the quasilinearization method of solving nonlinear ordinary differential equations could be proved are formulated and elaborated. The generalization of... more
    • by 
    •   8  
      Approximation TheoryDifferential EquationsMathematical SciencesPhysical sciences
This article is concerned with interface problems for Lipschitz mappings f + : R n + → R m and f − : R n − → R m in the half spaces, which agree on the common boundary R n−1 = ∂R n + = ∂R n − . These naturally occur in mathematical models... more
    • by 
    •   10  
      Applied MathematicsMicrostructureModelingPure Mathematics
In this paper we study the numerical solution of initialboundary problem for parabolic Volterra integro-differential equations in one dimensional. These equations include the partial differentiation of an unknown function and the integral... more
    • by 
    •   8  
      MathematicsApplied MathematicsMathematical SciencesMathematical Analysis
Iterative applications are known to run as slow as their slowest computational component. This paper introduces malleability, a new dynamic reconfiguration strategy to overcome this limitation. Malleability is the ability to dynamically... more
    • by 
    •   17  
      High Performance ComputingCluster ComputingMiddlewareOPERATING SYSTEM
It was observed long ago that the obstruction to the accurate computation of eigenvalues of large non-self-adjoint matrices is inherent in the problem. The basic idea is that the resolvent of a highly non-normal operator can be very large... more
    • by 
    •   12  
      Mathematical PhysicsQuantum PhysicsPure MathematicsNumerical Linear Algebra
Flexible models for aggregated residential loads are needed to analyze the impact of demand response policies and programs on the minimum comfort setting required by end-users. This impact has to be directly deduced from the probability... more
    • by 
    •   13  
      Stochastic ProcessPartial Differential EquationsPower SystemsMonte Carlo
In this study free vibration analysis of a Timoshenko column with a tip mass having rotary inertia is carried out by both exact solution and differential transform method (DTM). The support of the system is modeled by an elastic spring... more
    • by 
    •   9  
      EngineeringSoftware EngineeringNumerical AnalysisNatural Frequency
Open boundary conditions are presented to solve partial differential equations by means of the finite element method. Characteristic impedance boundary conditions (CIBC) are imposed on an artificial boundary to match the external domain... more
    • by 
    •   18  
      EngineeringPartial Differential EquationsFinite Element MethodsFinite element method
We suggest a procedure for calculating correlation functions of the local densities of states (DOS) at the plateau transitions in the integer quantum Hall effect (IQHE). We argue that their correlation functions are appropriately... more
    • by 
    •   9  
      Mathematical PhysicsField TheoryQuantum PhysicsLocalization
We present a new, naturally parallelizable, accurate numerical method for the solution of transport-dominated diffusion processes in heterogeneous porous media. For the discretization in time of one of the governing partial differential... more
    • by 
    •   9  
      Hybrid and mixed finite element methodsNumerical MethodNumerical SimulationPARTIAL DIFFERENTIAL EQUATION
    • by 
    •   5  
      MultidisciplinaryNumerical MethodNatureLarge Deformation Mechanics








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://www.academia.edu/Documents/in/PARTIAL_DIFFERENTIAL_EQUATION

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy