About the Project
19 Elliptic IntegralsSymmetric Integrals

§19.22 Quadratic Transformations

Contents
  1. §19.22(i) Complete Integrals
  2. §19.22(ii) Gauss’s Arithmetic-Geometric Mean (AGM)
  3. §19.22(iii) Incomplete Integrals

§19.22(i) Complete Integrals

Let x>0, y>0, a=(x+y)/2, and p0. Then

19.22.1 RF(0,x2,y2) =RF(0,xy,a2),
19.22.2 2RG(0,x2,y2) =4RG(0,xy,a2)xyRF(0,xy,a2),
19.22.3 2y2RD(0,x2,y2) =14(y2x2)RD(0,xy,a2)+3RF(0,xy,a2).
19.22.4 (p±2p2)RJ(0,x2,y2,p2)=2(p±2a2)RJ(0,xy,a2,p±2)3RF(0,xy,a2)+3π/(2p),

where

19.22.5 2p±=(p+x)(p+y)±(px)(py),

and hence

19.22.6 p+p =pa,
p+2+p2 =p2+xy,
p+2p2 =(p2x2)(p2y2),
4(p±2a2) =(p2x2±p2y2)2.

Bartky’s Transformation

19.22.7 2p2RJ(0,x2,y2,p2)=v+vRJ(0,xy,a2,v+2)+3RF(0,xy,a2),
v±=(p2±xy)/(2p).

If p=y, then (19.22.7) reduces to (19.22.3), but if p=x or p=y, then both sides of (19.22.4) are 0 by (19.20.9). If x<p<y or y<p<x, then p+ and p are complex conjugates.

§19.22(ii) Gauss’s Arithmetic-Geometric Mean (AGM)

The AGM, M(a0,g0), of two positive numbers a0 and g0 is defined in §19.8(i). Again, we assume that a0g0 (except in (19.22.10)), and define cn=an2gn2. Then

19.22.8 2πRF(0,a02,g02)=1M(a0,g0),
19.22.9 4πRG(0,a02,g02)=1M(a0,g0)(a02n=02n1cn2)=1M(a0,g0)(a12n=22n1cn2),

and

19.22.10 RD(0,g02,a02)=3π4M(a0,g0)a02n=0Qn,

where

19.22.11 Q0 =1,
Qn+1 =12Qnangnan+gn.

Qn has the same sign as a0g0 for n1.

19.22.12 RJ(0,g02,a02,p02)=3π4M(a0,g0)p02n=0Qn,

where p0>0 and

19.22.13 pn+1 =pn2+angn2pn,
εn =pn2angnpn2+angn,
Q0 =1,
Qn+1 =12Qnεn.

(If p0=a0, then pn=an and (19.22.13) reduces to (19.22.11).) As n, pn and εn converge quadratically to M(a0,g0) and 0, respectively, and Qn converges to 0 faster than quadratically. If the last variable of RJ is negative, then the Cauchy principal value is

19.22.14 RJ(0,g02,a02,q02)=3π4M(a0,g0)(q02+a02)(2+a02g02q02+g02n=0Qn),

and (19.22.13) still applies, provided that

19.22.15 p02=a02(q02+g02)/(q02+a02).

§19.22(iii) Incomplete Integrals

Let x, y, and z have positive real parts, assume p0, and retain (19.22.5) and (19.22.6). Define

19.22.16 a =(x+y)/2,
2z± =(z+x)(z+y)±(zx)(zy),

so that

19.22.17 z+z =za,
z+2+z2 =z2+xy,
z+2z2 =(z2x2)(z2y2),
4(z±2a2) =(z2x2±z2y2)2.

Then

19.22.18 RF(x2,y2,z2)=RF(a2,z2,z+2),
19.22.19 (z±2z2)RD(x2,y2,z2)=2(z±2a2)RD(a2,z2,z±2)3RF(x2,y2,z2)+(3/z),
19.22.20 (p±2p2)RJ(x2,y2,z2,p2)=2(p±2a2)RJ(a2,z+2,z2,p±2)3RF(x2,y2,z2)+3RC(z2,p2),
19.22.21 2RG(x2,y2,z2)=4RG(a2,z+2,z2)xyRF(x2,y2,z2)z,
19.22.22 RC(x2,y2)=RC(a2,ay).

If x,y,z are real and positive, then (19.22.18)–(19.22.21) are ascending Landen transformations when x,y<z (implying a<z<z+), and descending Gauss transformations when z<x,y (implying z+<z<a). Ascent and descent correspond respectively to increase and decrease of k in Legendre’s notation. Descending Gauss transformations include, as special cases, transformations of complete integrals into complete integrals; ascending Landen transformations do not.

If p=x or p=y, then (19.22.20) reduces to 0=0 by (19.20.13), and if z=x or z=y then (19.22.19) reduces to 0=0 by (19.20.20) and (19.22.22). If x<z<y or y<z<x, then z+ and z are complex conjugates. However, if x and y are complex conjugates and z and p are real, then the right-hand sides of all transformations in §§19.22(i) and 19.22(iii)—except (19.22.3) and (19.22.22)—are free of complex numbers and p±2p2=±|p2x2|0.

The transformations inverse to the ones just described are the descending Landen transformations and the ascending Gauss transformations. The equations inverse to (19.22.5) and (19.22.16) are given by

19.22.23 x+y =2a,
xy =(2/a)(a2z+2)(a2z2),
z =z+z/a,

and the corresponding equations with z, z+, and z replaced by p, p+, and p, respectively. These relations need to be used with caution because y is negative when 0<a<z+z(z+2+z2)1/2.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy