- [1] Guyet, T., Nicolas, H.: Long term analysis of time series of satellite images. Pattern Recognition Letters 70, 17â23 (2016)
Paper not yet in RePEc: Add citation now
- [10] Ramsay, J.O., Dalzell, C.: Some tools for functional data analysis. Journal of the Royal Statistical Society: Series B (Methodological) 53(3), 539â561 (1991)
Paper not yet in RePEc: Add citation now
- [11] Bosq, D.: Linear Processes in Function Spaces: Theory and Applications vol. 149. Springer, Germany (2000)
Paper not yet in RePEc: Add citation now
- [12] Ramsay, J., Silverman, B.: Functional Data Analysis, pp. 147â172. Springer, New York (2005)
Paper not yet in RePEc: Add citation now
- [13] Chiou, J.-M., Chen, Y.-T., Yang, Y.-F.: Multivariate functional principal component analysis: A normalization approach. Statistica Sinica, 1571â1596 (2014)
Paper not yet in RePEc: Add citation now
- [14] Zhu, H., Li, R., Kong, L.: Multivariate varying coefficient model for functional responses. Annals of statistics 40(5), 2634 (2012)
Paper not yet in RePEc: Add citation now
[15] Li, J., Huang, C., Hongtu, Z., Initiative, A.D.N.: A functional varyingcoefficient single-index model for functional response data. Journal of the American Statistical Association 112(519), 1169â1181 (2017)
[16] Zhu, H., Morris, J.S., Wei, F., Cox, D.D.: Multivariate functional response regression, with application to fluorescence spectroscopy in a cervical precancer study. Computational statistics & data analysis 111, 88â101 (2017)
- [18] Li, C., Xiao, L., Luo, S.: Fast covariance estimation for multivariate sparse functional data. Stat 9(1), 245 (2020)
Paper not yet in RePEc: Add citation now
[19] Kowal, D.R., Matteson, D.S., Ruppert, D.: Functional autoregression for sparsely sampled data. Journal of Business & Economic Statistics 37(1), 97â109 (2019)
[2] Stoehr, C., Aston, J.A., Kirch, C.: Detecting changes in the covariance structure of functional time series with application to fmri data. Econometrics and Statistics 18, 44â62 (2021)
[20] Granger, C.W.: Investigating causal relations by econometric models and crossspectral methods. Econometrica: journal of the Econometric Society 37(3), 424â438 (1969)
[21] Boudjellaba, H., Dufour, J.-M., Roy, R.: Simplified conditions for noncausality between vectors in multivariate arma models. Journal of Econometrics 63(1), 271â287 (1994)
[22] Comte, F., Lieberman, O.: Second-order noncausality in multivariate garch processes. Journal of time series analysis 21(5), 535â557 (2000)
[23] Hafner, C.M., Herwartz, H.: Testing for causality in variance using multivariate garch models. Annales dâEconomie et de Statistique 89, 215â241 (2008)
- [24] WozÌniak, T.: Testing causality between two vectors in multivariate garch models. International Journal of Forecasting 31(3), 876â894 (2015)
Paper not yet in RePEc: Add citation now
[25] Droumaguet, M., WozÌniak, T.: Bayesian testing of granger causality in markovswitching vars (2012)
[26] Allen, D.E., Hooper, V.: Generalized correlation measures of causality and forecasts of the vix using non-linear models. Sustainability 10(8), 2695 (2018)
- [27] Saumard, M.: Linear causality in the sense of granger with stationary functional time series. In: Functional Statistics and Related Fields, pp. 225â231. Springer, Switzerland (2017)
Paper not yet in RePEc: Add citation now
[28] Shang, H.L., Ji, K., Beyaztas, U.: Granger causality of bivariate stationary curve time series. Journal of Forecasting 40(4), 626â635 (2021)
- [29] Kass, R.E., Raftery, A.E.: Bayes factors. Journal of the american statistical association 90(430), 773â795 (1995)
Paper not yet in RePEc: Add citation now
[30] Geweke, J.: Using simulation methods for bayesian econometric models: inference, development, and communication. Econometric reviews 18(1), 1â73 (1999)
- [32] Kumar, A., Goyal, P.: Forecasting of air quality in delhi using principal component regression technique. Atmospheric Pollution Research 2(4), 436â444 (2011)
Paper not yet in RePEc: Add citation now
- [33] Meng, C., Cheng, T., Gu, X., Shi, S., Wang, W., Wu, Y., Bao, F.: Contribution of meteorological factors to particulate pollution during winters in beijing. Science of The Total Environment 656, 977â985 (2019)
Paper not yet in RePEc: Add citation now
[4] HorvaÌth, L., Kokoszka, P., Rice, G.: Testing stationarity of functional time series. Journal of Econometrics 179(1), 66â82 (2014)
[5] Li, D., Robinson, P.M., Shang, H.L.: Long-range dependent curve time series. Journal of the American Statistical Association 115(530), 957â971 (2020)
[6] Chen, Y., Li, B.: An adaptive functional autoregressive forecast model to predict electricity price curves. Journal of Business & Economic Statistics 35(3), 371â 388 (2017)
- [7] Chen, Y., Marron, J., Zhang, J.: Modeling seasonality and serial dependence of electricity price curves with warping functional autoregressive dynamics. The Annals of Applied Statistics 13(3), 1590â1616 (2019)
Paper not yet in RePEc: Add citation now
[8] Aue, A., Norinho, D.D., HoÌrmann, S.: On the prediction of stationary functional time series. Journal of the American Statistical Association 110(509), 378â392 (2015)
[9] Besse, P.C., Cardot, H., Stephenson, D.B.: Autoregressive forecasting of some functional climatic variations. Scandinavian Journal of Statistics 27(4), 673â 687 (2000)