- Abbasi-Yadkori, Y., PaÌl, D., and SzepesvaÌri, C. (2011). Improved algorithms for linear stochastic bandits. Advances in neural information processing systems, 24.
Paper not yet in RePEc: Add citation now
Ai, C. and Chen, X. (2003). Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica, 71(6):1795â1843.
Anderer, A., Bastani, H., and Silberholz, J. (2022). Adaptive clinical trial designs with surrogates: When should we bother? Management Science, 68(3):1982â2002.
Angrist, J. and Imbens, G. (1995). Identification and estimation of local average treatment effects.
Araman, V. F. and Caldentey, R. A. (2022). Diffusion approximations for a class of sequential experimentation problems. Management Science, 68(8):5958â5979.
- Aramayo, N., Schiappacasse, M., and Goic, M. (2022). A multi-armed bandit approach for house ads recommendations. Available at SSRN 4107976.
Paper not yet in RePEc: Add citation now
- Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research, 3(Nov):397â422.
Paper not yet in RePEc: Add citation now
Bakhitov, E. and Singh, A. (2021). Causal gradient boosting: Boosted instrumental variable regression. arXiv preprint arXiv:2101.06078.
Bastani, H. and Bayati, M. (2020). Online decision making with high-dimensional covariates. Operations Research, 68(1):276â294.
Bastani, H., Bayati, M., and Khosravi, K. (2021). Mostly exploration-free algorithms for contextual bandits. Management Science, 67(3):1329â1349.
Bertsimas, D., Korolko, N., and Weinstein, A. M. (2019). Covariate-adaptive optimization in online clinical trials. Operations Research, 67(4):1150â1161.
- Bibaut, A., Dimakopoulou, M., Kallus, N., Chambaz, A., and van der Laan, M. (2021). Post-contextual-bandit inference. Advances in Neural Information Processing Systems, 34:28548â28559.
Paper not yet in RePEc: Add citation now
- Bojinov, I., Simchi-Levi, D., and Zhao, J. (2020). Design and analysis of switchback experiments. arXiv preprint arXiv:2009.00148.
Paper not yet in RePEc: Add citation now
- Bumbaca, F., Misra, S., and Rossi, P. E. (2020). Scalable target marketing: Distributed markov chain monte carlo for bayesian hierarchical models. Journal of Marketing Research, 57(6):999â1018.
Paper not yet in RePEc: Add citation now
- Carpentier, A., Vernade, C., and Abbasi-Yadkori, Y. (2020). The elliptical potential lemma revisited. arXiv preprint arXiv:2010.10182.
Paper not yet in RePEc: Add citation now
Chen, H., Lu, W., and Song, R. (2021). Statistical inference for online decision making: In a contextual bandit setting. Journal of the American Statistical Association, 116(533):240â255.
Chen, X., Hong, H., and Tamer, E. (2005). Measurement error models with auxiliary data. The Review of Economic Studies, 72(2):343â366.
Chernozhukov, V., Imbens, G. W., and Newey, W. K. (2007). Instrumental variable estimation of nonseparable models. Journal of Econometrics, 139(1):4â14.
- Chu, W., Li, L., Reyzin, L., and Schapire, R. (2011). Contextual bandits with linear payoff functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pages 208â214. JMLR Workshop and Conference Proceedings.
Paper not yet in RePEc: Add citation now
Clements, M. T. and Ohashi, H. (2005). Indirect network effects and the product cycle: video games in the us, 1994â2002. The Journal of Industrial Economics, 53(4):515â542.
- Dani, V., Hayes, T. P., and Kakade, S. M. (2008). Stochastic linear optimization under bandit feedback.
Paper not yet in RePEc: Add citation now
- Delshad, S. and Khademi, A. (2022). Adaptive design of personalized dose-finding clinical trials. Service Science.
Paper not yet in RePEc: Add citation now
- Durand, A., Achilleos, C., Iacovides, D., Strati, K., Mitsis, G. D., and Pineau, J. (2018). Contextual bandits for adapting treatment in a mouse model of de novo carcinogenesis. In Machine learning for healthcare conference, pages 67â82. PMLR.
Paper not yet in RePEc: Add citation now
- Farias, V., Moallemi, C., Peng, T., and Zheng, A. (2022). Synthetically controlled bandits. arXiv preprint arXiv:2202.07079.
Paper not yet in RePEc: Add citation now
- Gordon, B. R., Jerath, K., Katona, Z., Narayanan, S., Shin, J., and Wilbur, K. C. (2021). Inefficiencies in digital advertising markets. Journal of Marketing, 85(1):7â 25.
Paper not yet in RePEc: Add citation now
Gordon, B. R., Zettelmeyer, F., Bhargava, N., and Chapsky, D. (2019). A comparison of approaches to advertising measurement: Evidence from big field experiments at facebook. Marketing Science, 38(2):193â225.
Griliches, Z. (1977). Estimating the returns to schooling: Some econometric problems. Econometrica: Journal of the Econometric Society, pages 1â22.
- Gur, Y. and Momeni, A. (2022). Adaptive sequential experiments with unknown information arrival processes. Manufacturing & Service Operations Management.
Paper not yet in RePEc: Add citation now
- Hadad, V., Hirshberg, D. A., Zhan, R., Wager, S., and Athey, S. (2021). Confidence intervals for policy evaluation in adaptive experiments. Proceedings of the National Academy of Sciences, 118(15):e2014602118.
Paper not yet in RePEc: Add citation now
Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica: Journal of the econometric society, pages 1029â1054.
Hausman, J. A. (1983). Specification and estimation of simultaneous equation models. Handbook of econometrics, 1:391â448.
Imbens, G. (2014). Instrumental variables: an econometricianâs perspective. Technical report, National Bureau of Economic Research.
Imbens, G. W. and Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.
- Langford, J. and Zhang, T. (2007). The epoch-greedy algorithm for contextual multiarmed bandits. Advances in neural information processing systems, 20(1):96â1.
Paper not yet in RePEc: Add citation now
- Lattimore, F., Lattimore, T., and Reid, M. D. (2016). Causal bandits: Learning good interventions via causal inference. Advances in Neural Information Processing Systems, 29.
Paper not yet in RePEc: Add citation now
- Lattimore, T. and SzepesvaÌri, C. (2020). Bandit algorithms. Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Li, J., Luo, Y., and Zhang, X. (2021). Causal reinforcement learning: An instrumental variable approach. arXiv preprint arXiv:2103.04021.
Paper not yet in RePEc: Add citation now
- Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web, pages 661â670.
Paper not yet in RePEc: Add citation now
- Liao, H., Peng, L., Liu, Z., and Shen, X. (2014). ipinyou global rtb bidding algorithm competition dataset. In Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, pages 1â6.
Paper not yet in RePEc: Add citation now
- Liu, B., Yu, T., Lane, I., and Mengshoel, O. J. (2018). Customized nonlinear bandits for online response selection in neural conversation models. In Thirty-Second AAAI Conference on Artificial Intelligence.
Paper not yet in RePEc: Add citation now
Misra, K., Schwartz, E. M., and Abernethy, J. (2019). Dynamic online pricing with incomplete information using multiarmed bandit experiments. Marketing Science, 38(2):226â252.
Moazeni, S., Defourny, B., and Wilczak, M. J. (2020). Sequential learning in designing marketing campaigns for market entry. Management Science, 66(9):4226â4245.
Newey, W. K. and Powell, J. L. (2003). Instrumental variable estimation of nonparametric models. Econometrica, 71(5):1565â1578.
- Nie, X., Tian, X., Taylor, J., and Zou, J. (2018). Why adaptively collected data have negative bias and how to correct for it. In International Conference on Artificial Intelligence and Statistics, pages 1261â1269. PMLR.
Paper not yet in RePEc: Add citation now
- Qin, L., Chen, S., and Zhu, X. (2014). Contextual combinatorial bandit and its application on diversified online recommendation. In Proceedings of the 2014 SIAM International Conference on Data Mining, pages 461â469. SIAM.
Paper not yet in RePEc: Add citation now
Sinkinson, M. and Starc, A. (2019). Ask your doctor? direct-to-consumer advertising of pharmaceuticals. The Review of Economic Studies, 86(2):836â881.
- Tang, L., Jiang, Y., Li, L., Zeng, C., and Li, T. (2015). Personalized recommendation via parameter-free contextual bandits. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, pages 323â332.
Paper not yet in RePEc: Add citation now
- Waisman, C., Nair, H. S., Carrion, C., and Xu, N. (2019). Online causal inference for advertising in real-time bidding auctions. arXiv preprint arXiv:1908.08600.
Paper not yet in RePEc: Add citation now
- Woodroofe, M. (1979). A one-armed bandit problem with a concomitant variable. Journal of the American Statistical Association, 74(368):799â806.
Paper not yet in RePEc: Add citation now