Aastveit, K.A., H.C. Bjørnland, and L.A. Thorsud, 2015, What drives Oil Prices? Emerging Versus Developing Economies? Journal of Applied Econometrics 30(1), 10131028.
Adolfson, M., Linde, J., Villani, M., 2005. Forecasting Performance of an Open Economy Dynamic Stochastic General Equilibrium Model. Sveriges Riksbank Working Paper n.190.
Alquist, R., Kilian, L., Vigfusson, R.J., 2013. Forecasting the Price of Oil. Handbook of Economic Forecasting, Vol. 2A, Chapter 8. Elsevier.
- Altmann, A., Tolosi, L., Sander, O., Lengauer, T., 2010. Permutation importance: a corrected feature importance measure. Bioinformatics 26, 1340-1347.
Paper not yet in RePEc: Add citation now
- Apostol, T.M., 1967. Calculus, Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra (2nd Ed.), New York: John Wiley & Sons.
Paper not yet in RePEc: Add citation now
Araujo, G.S., Gaglianone, W.P., 2020. Machine learning methods for in‡ ation forecasting in Brazil: New contenders versus classical models. Mimeo.
Bai, J., Ng, S., 2002. Determining the number of factors in approximate factor models. Econometrica 70, 191-221.
Bai, J., Ng, S., 2008. Forecasting economic time series using targeted predictors. Journal of Econometrics 146, 304-317.
Baker, S.R., Bloom, N., Davis, S.J., 2015. Measuring Economic Policy Uncertainty. NBER Working Paper 21633, National Bureau of Economic Research.
Bańbura, M., Giannone, D., Modugno, M., Reichlin, L., 2013. Now-casting and the real-time data ‡ ow. Working Paper Series n.1564, European Central Bank.
Barsky, R.B., Kilian,L., 2002. Do we really know that oil caused the great stag‡ ation? A monetary alternative. In: Bernanke, B.S., Rogo, K. (Eds.), NBER Macroeconomics Annual 2001. MIT Press, Cambridge, 137-183.
Batchelor, R., 2007. Bias in macroeconomic forecasts. International Journal of Forecasting 23(2), 189-203.
- Baumeister, C., Kilian, L., 2012. Real-time forecasts of the real price of oil. Journal of Business and Economic Statistics 30, 326-336.
Paper not yet in RePEc: Add citation now
Baumeister, C., Kilian, L., 2015. Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach. Journal of Business and Economic Statistics 33(3), 338-351.
Baumeister, C., Kilian, L., 2016. Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us. Journal of Economic Perspectives 30(1), 139-160.
Bjørnland, H.C., Zhulanova, J., 2018. The Shale Oil Boom and the U.S. Economy: Spillovers and Time-Varying Eects. CAMP Working paper 8/2018.
- Breiman, L., 2001. Random forests. Machine Learning 45, 5-32.
Paper not yet in RePEc: Add citation now
Caldara, D., Iacoviello, M., 2018. Measuring Geopolitical Risk. FRB International Finance Discussion Paper n. 1222, Board of Governors - Fed.
- Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. The 22nd SIGKDD Conference on Knowledge Discovery and Data Mining. Mimeo.
Paper not yet in RePEc: Add citation now
- Cheng, K., Huang, N., Shi, Z., 2019. Survey-Based Forecasting: To Average or Not To Average. Mimeo.
Paper not yet in RePEc: Add citation now
Clark, T.E., 2011. Real-Time Density Forecasts from Bayesian Vector Autoregressions with Stochastic Volatility. Journal of Business and Economic Statistics 29, 327-341.
Clark, T.E., West, K.D., 2007. Approximately Normal Tests for Equal Predictive Accuracy in Nested Models. Journal of Econometrics 138, 291-311.
Cologni, A., Manera, M., 2008. Oil prices, in‡ ation and interest rates in a structural cointegrated VAR model for the G-7 countries. Energy Economics 38, 856-888.
Cortazar, G., Kovacevic, I., Schartz, E., 2015. Expected commodity returns and pricing models. Energy Economics 49, 60-71.
Cortazar, G., Naranjo, L., 2006. An N-factor Gaussian model of oil futures prices. Journal of Futures Markets: Futures, Options, and Other Derivative Products 26(3), 243-268.
Duarte, A.M., Gaglianone, W.P., Guillén, O.T.C., Issler, J.V., 2019. Commodity Prices and Global Economic Activity: A Derived-Demand Approach. Mimeo.
Elliott, G., Gargano, A., Timmermann, A., 2013. Complete subset regressions. Journal of Econometrics 177(2), 357-373.
Elliott, G., Gargano, A., Timmermann, A., 2015. Complete subset regressions with large-dimensional sets of predictors. Journal of Economic Dynamics and Control 54, 86-110.
Forni, M., Hallim, M., Lippi, M., Reichlin, L., 2000. The generalized dynamic factor model: Identi…cation and estimation. Review of Economics and Statistics 82, 540-554.
Gaglianone, W.P., Issler, J.V., 2019. Microfounded Forecasting. Ensaios Econômicos EPGE n.813, Getulio Vargas Foundation.
Garcia, M.G.P., Medeiros, M.C., Vasconcelos, G.F.R., 2017. Real-time in‡ ation forecasting with high-dimensional models: The case of Brazil. International Journal of Forecasting 33, 679-693.
Gargano, A., Timmermann, A., 2014. Forecasting commodity price indexes using macroeconomic and …nancial predictors International Journal of Forecasting 30, 825-843.
Gibson, R., Schwartz, E.S., 1990. Stochastic convenience yield and the pricing of oil contingent claims. Journal of Finance 45, 959-976.
Gneiting, T., 2011. Making and Evaluating Point Forecasts. Journal of the American Statistical Association 106(494), 746-762.
Gneiting, T., Raftery, A.E., 2007. Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association 102(477), 359-378.
Gogolin, F., Kearney, F., Lucey, B.M., Peat, M., Vigne, S.A., 2018. Uncovering long term relationships between oil prices and the economy: A time-varying cointegration analysis. Energy Economics 76, 584-593.
Goyal, A.,Welch, I., 2008. A Comprehensive Look at the Empirical Performance of Equity Premium Prediction. Review of Financial Studies 21(4), 1455-1508.
- Granger, C.W.J., Ramanathan, R., 1984. Improved methods of combining forecasting. Journal of Forecasting 3, 197-204.
Paper not yet in RePEc: Add citation now
- Hall, A.S., 2018. Machine Learning Approaches to Macroeconomic Forecasting. Federal Reserve Bank of Kansas City Economic Review, 4th quarter of 2018, 63-81.
Paper not yet in RePEc: Add citation now
Hamilton, J.D., 2003. What is an oil shock? Journal of Econometrics 113, 363-398.
Hamilton, J.D., Herrera, A., 2004. Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy. Journal of Money, Credit, and Banking 36(2), 265-286.
- Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd edition. Springer-Verlag, New York.
Paper not yet in RePEc: Add citation now
- Hoerl, A.E., Kennard, R.W., 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55-67.
Paper not yet in RePEc: Add citation now
Hong, H., Yogo, M., 2012. What does futures market interest tell us about the macroeconomy and asset prices? Journal of Financial Economics 105, 473-490.
- Isserlis, L., 1938. Tramp shipping cargoes and freights. Journal of the Royal Statistical Society 101 (1), 53-134.
Paper not yet in RePEc: Add citation now
Issler, J.V., Lima, L.R., 2009. A Panel Data Approach to Economic Forecasting: The Bias-corrected Average Forecast. Journal of Econometrics 152 (2), 153-164.
Janitza, S., Celik, E., Boulesteix, A.-L., 2018. A computationally fast variable importance test for random forests for high-dimensional data. Advances in Data Analysis and Classi…cation 12(4), 885-915.
- Judge, G.G., Hill, R.C., Gri ths, W.E., Lütkepohl, H., Lee, T.-C., 1988. Introduction to the Theory and Practice of Econometrics. New York, Wiley.
Paper not yet in RePEc: Add citation now
Jung, J.K., Patnam, M., Ter-Martirosyan, A., 2018. An Algorithmic Crystal Ball: Forecasts-based on Machine Learning. IMF Working Paper WP/18/230.
Kilian, L., Murphy, D., 2014. The Role of Inventories and Speculative Trading in the Global Market for Crude Oil. Journal of Applied Econometrics 29 (3), 454-478.
Kilian, L., Vigfusson, R.J., 2013. Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries. Journal of Business and Economic Statistics 31(1), 78-93.
Kilian, L., Vigfusson, R.J., 2017. The Role of Oil Price Shocks in Causing U.S. Recessions. Journal of Money, Credit, and Banking 49(8), 1747-1776.
- Koenker, R., 2005. Quantile Regression. Cambridge University Press.
Paper not yet in RePEc: Add citation now
Laster, D., Bennett, P., Geoum, I., 1999. Rational bias in macroeconomic forecasts. The Quarterly Journal of Economics 114(1), 293-318.
Lima, L.R., Meng, F., 2017. Out-of-sample return predictability: a quantile combination approach. Journal of Applied Econometrics 32(4), 877-895.
Marcellino, M., Stock, J., Watson, M., 2006. A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series. Journal of Econometrics 135, 499-526.
- McCracken, M.W., Ng, S., 2015. FRED-MD: A Monthly Database for Macroeconomic Research. Working Paper 2015-012B, Federal Reserve Bank of St. Louis.
Paper not yet in RePEc: Add citation now
- Medeiros, M., Mendes, E., 2016. L1-regularization of high-dimensional time-series models with ‡ exible innovations. Journal of Econometrics 191, 255-271.
Paper not yet in RePEc: Add citation now
- Medeiros, M., Vasconcelos, G.F.R., de Freitas, E.H., 2016. Forecasting Brazilian In‡ ation with High Dimensional Models. Brazilian Review of Econometrics 36(2), 223-254.
Paper not yet in RePEc: Add citation now
- Meinshausen, N., 2006. Quantile Regression Forests. Journal of Machine Learning Research 7, 983-999.
Paper not yet in RePEc: Add citation now
Miller, J.I., Ni, S., 2011. Long-Term Oil Price Forecasts: A New Perspective on Oil and the Macroeconomy. Macroeconomic Dynamics 15(S3), 396-415.
Miller, J.I., Ratti, R., 2009. Crude Oil and Stock Markets: Stability, Instability, and Bubbles. Energy Economics 31(4), 559-568.
Mohaddes, K., Pesaran, M.H., 2016. Oil Prices and the Global Economy: Is It Dierent This Time Around? IMF Working Paper WP/16/210.
Morales-Arias, L., Moura, G.V., 2013. Adaptive forecasting of exchange rates with panel data. International Journal of Forecasting 29, 493-509.
- Morde, V., Setty, V.A., 2019. XGBoost Algorithm: Long May She Reign! Mimeo.
Paper not yet in RePEc: Add citation now
- Neal, B., Mittal, S., Baratin, A., Tantia, V., Scicluna, M., Lacoste-Julien, S., Mitliagkas, I., 2018. A Modern Take on the Bias-Variance Tradeo in Neural Networks. Mimeo, available at https://arxiv.org/abs/1810.08591
Paper not yet in RePEc: Add citation now
- Nembrini, S., Koenig, I.R., Wright, M.N., 2018. The revival of the Gini Importance? Bioinformatics 34(21), 3711-3718.
Paper not yet in RePEc: Add citation now
Phillips, P.C.B., Moon, H.R., 1999. Linear regression limit theory for nonstationary panel data. Econometrica 67 (5), 1057-1111.
Rapach, D. E., Strauss, J. K., & Zhou, G., 2010. Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy. The Review of Financial Studies 23(2), 821-862.
- Ravazzolo F., Rothman, P., 2012. Oil and U.S. GDP: A Real-Time Out-of-Sample Examination. Journal of Money, Credit and Banking 45(2-3), 449-463.
Paper not yet in RePEc: Add citation now
Schwartz, E., Smith, J.E., 2000. Short-Term Variations and Long-Term Dynamics in Commodity Prices. Management Science 46 (7), 893-911.
Stock, J., Watson, M., 2002. Forecasting Using Principal Components from a Large Number of Predictors. Journal of the American Statistical Association 97(460), 11671179.
- Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society 58(1), 267-288.
Paper not yet in RePEc: Add citation now
- U.S. Energy Information Administration, 2020. What drives crude oil prices? Mimeo.
Paper not yet in RePEc: Add citation now
Varian, H.R., 2014. Big data: New tricks for econometrics. Journal of Economic Perspectives 28(2), 3-28.
Yu, L., Zhao, Y., Tang, L., Yang, Z., 2019. Online big data-driven oil consumption forecasting with Google trends. International Journal of Forecasting 35, 213-223.
Zagaglia, P., 2010. Macroeconomic factors and oil futures prices: a data-rich model. Energy Economics 32, 409-417.
Zou, H., 2006. The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association 101 (476), 1418-1429.
Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society 67(2), 301-320.
- Zou, H., Hastie, T., Tibshirani, R., 2007. On the degrees of freedom of the lasso. The Annals of Statistics 35, 2173-2192. – Technical Appendix – Machine Learning and Oil Price Point and Density Forecasting Contents:
Paper not yet in RePEc: Add citation now