Aruoba, S. B. (2008). Data revisions are not well-behaved. Journal of Money, Credit and Banking, 40, 319– 340.
Bachmann, R., Elstner, S., and Sims, E. R. (2013). Uncertainty and economic activity: Evidence from Business Survey Data. American Economic Journal: Macroeconomics, 5(2), 217– 249.
Baker, S. R., Bloom, N., and Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4), 1593– 1636.
BanÌbura, M., Giannone, D., Modugno, M., and Reichlin, L. (2013). Now-casting and the real-time data ‡ ow, chapter 4. In Graham Elliott, A. T. (ed.), Handbook of Economic Forecasting, volume 2A, pp. 195– 327: Elsevier.
Barsky, R. B., and Sims, E. R. (2011). News shocks and business cycles. Journal of Monetary Economics, 58(3), 273– 289.
Barsky, R. B., and Sims, E. R. (2012). Information, Animal Spirits, and the Meaning of Innovations in Consumer Con…dence. American Economic Review, 102(4), 1343– 77.
Beaudry, P., and Portier, F. (2006). Stock Prices, News, and Economic Fluctuations. American Economic Review, 96(4), 1293– 1307.
Beaudry, P., and Portier, F. (2014). News-Driven Business Cycles: Insights and Challenges. Journal of Economic Literature, 52(4), 993– 1074.
Bloom, N. (2009). The impact of uncertainty shocks. Econometrica, 77, 623– 685.
Bordalo, P., Gennaioli, N., Ma, Y., and Shleifer, A. (2018). Over-reaction in Macroeconomic Expectations. NBER Working Papers 24932, National Bureau of Economic Research, Inc.
Cascaldi-Garcia, D. (2017). News Shocks and the Slope of the Term Structure of Interest Rates: Comment. American Economic Review, 107(10), 3243– 3249.
Clements, M. P., and Galvão, A. B. (2017). Predicting Early Data Revisions to US GDP and the Eects of Releases on Equity Markets. Journal of Business and Economic Statistics, 35:3, 389 –406.
- Clements, M. P., and Galvão, A. B. (2019). Data revisions and real-time forecasting. The Oxford Research Encyclopedia of Economics and Finance. Oxford University Press. doi:10.1093/acrefore/9780190625979.013.248.
Paper not yet in RePEc: Add citation now
- Croushore, D. (2011a). Forecasting with real-time data vintages, chapter 9. In Clements, M. P., and Hendry, D. F. (eds.), The Oxford Handbook of Economic Forecasting, pp. 247– 267: Oxford University Press.
Paper not yet in RePEc: Add citation now
Croushore, D. (2011b). Frontiers of real-time data analysis. Journal of Economic Literature, 49, 72– 100.
Croushore, D., and Evans, C. L. (2006). Data revisions and the identi…cation of monetary policy shocks. Journal of Monetary Economics, 53(6), 1135– 1160.
Croushore, D., and Stark, T. (2003). A real-time data set for macroeconomists: Does the data vintage matter?. The Review of Economics and Statistics, 85, 605– 617.
Cunningham, A., Eklund, J., Jeery, C., Kapetanios, G., and Labhard, V. (2009). A state space approach to extracting the signal from uncertain data. Journal of Business & Economic Statistics, 30, 173– 180. doi:10.1198/jbes.2009.08171.
Engelberg, J., Manski, C. F., and Williams, J. (2011). Assessing the temporal variation of macroeconomic forecasts by a panel of changing composition. Journal of Applied Econometrics, 26(7), 1059– 1078.
Fève, P., and Guay, A. (2016). Sentiments in SVARs. Tse working papers TSE-656, Toulouse School of Economics (TSE).
- Fernald, J. G. (2014). A quarterly, utilization-adjusted series on total factor productivity. 2012-19, FRBSF Working Paper (updated March 2014).
Paper not yet in RePEc: Add citation now
Forni, M., Gambetti, L., and Sala, L. (2019). Structural VARs and Non-invertible Macroeconomic Models. Journal of Applied Econometrics.
Garratt, A., Lee, K., Mise, E., and Shields, K. (2008). Real time representations of the output gap. Review of Economics and Statistics, 90, 792– 804.
Ghysels, E. (2016). Macroeconomics and the reality of mixed frequency data. Journal of Econometrics, 193, 294– 314.
Ghysels, E., and Wright, J. (2009). Forecasting Professional Forecasters. Journal of Business and Economic Statistics, 27, 504– 516.
Giannone, D., Lenza, M., and Primiceri, G. E. (2015). Prior Selection for Vector Autoregressions. The Review of Economics and Statistics, 97(2), 436– 451.
- Giordani, P., and Söderlind, P. (2003). In‡ ation forecast uncertainty. European Economic Review, 47(6), 1037– 1059.
Paper not yet in RePEc: Add citation now
Girardi, A., and Reuter, A. (2017). New uncertainty measures for the EURO area uisng survey data. Oxford Economic Papers, 69, 278– 300.
Jacobs, J. P. A. M., and van Norden, S. (2011). Modeling data revisions: Measurement error and dynamics of ‘ true’values. Journal of Econometrics, 161, 101– 109.
Jorda, O. (2005). Estimation and Inference of Impulse Responses by Local Projections. American Economic Review, 95(1), 161– 182.
- Keynes, J. M. (1936). The General Theory of Employment, Interest and Money. London: Mcmillan.
Paper not yet in RePEc: Add citation now
Kilian, L., and Lütkepohl, H. (2017). Structural Vector Autoregressive Analysis. Cambridge: Cambridge University Press.
Kishor, N. K., and Koenig, E. F. (2012). VAR estimation and forecasting when data are subject to revision. Journal of Business and Economic Statistics, 30(2), 181– 190.
Kurmann, A., and Sims, E. (2017). Revisions in Utilization-Adjusted TFP and Robust Identi…cation of News Shocks. Nber working papers 23142, National Bureau of Economic Research, Inc.
- Lagerborg, A., Pappa, E., and Ravn, M. O. (2019). Sentimental Business Cycles. Discussion paper. Mimeo, EUI Florence.
Paper not yet in RePEc: Add citation now
Leduc, S., and Sill, K. (2013). Expectations and Economic Fluctuations: An Analysis Using Survey Data. The Review of Economics and Statistics, 95(4), 1352– 1367.
- Levchenko, A. A., and Pandalai-Nayar, N. (2017). TFP, News, and ‘ Sentiments’ : The International Transmission of Business Cycles. Working papers, University of Michigan.
Paper not yet in RePEc: Add citation now
Mankiw, N. G., and Reis, R. (2002). Sticky information versus sticky prices: A proposal to replace the New Keynesian Phillips Curve. Quarterly Journal of Economics, 117, 1295– 1328.
Mankiw, N. G., and Shapiro, M. D. (1986). News or noise: An analysis of GNP revisions. Survey of Current Business (May 1986), US Department of Commerce, Bureau of Economic Analysis, 20– 25.
Milani, F. (2011). Expectation Shocks and Learning as Drivers of the Business Cycle. Economic Journal, 121(552), 379– 401.
Milani, F. (2017). Sentiment and the U.S. business cycle. Journal of Economic Dynamics and Control, 82(C), 289– 311.
Miyamoto, W., and Nguyen, T. L. (2019). The Expectational Eects of News in Business Cycles: Evidence from Forecast Data. Journal of Monetary Economics. Forthcoming.
- Pigou, A. C. (1927). Industrial Fluctuations. London: Mcmillan.
Paper not yet in RePEc: Add citation now
- Plagborg-Møller, M., and Wolf., C. K. (2018). Instrumental variable identi…cation of dynamic variance decompositions. Working paper, Princeton University.
Paper not yet in RePEc: Add citation now
Ramey, V. (2016). Macroeconomic Shocks and Their Propagation. In Taylor, J. B., and Uhlig, H. (eds.), Handbook of Macroeconomics, Vol. 2A, Ch. 2, pp. 71– 162: Elsevier.
Romer, C. D., and Romer, D. H. (2004). A new measure of monetary shocks: Derivation and implications. American Economic Review, 94(4), 1055– 1084.
Sims, C. A. (2003). Implications of rational inattention. Journal of Monetary Economics, 50, 665– 690.
Stock, J. H., and Watson, M. W. (2018). Identi…cation and estimation of dynamic causal eects in macroeconomics using external instruments. The Economic Journal, 128(610), 917– 948.
Zarnowitz, V., and Lambros, L. A. (1987). Consensus and uncertainty in economic prediction. Journal of Political Economy, 95(3), 591–