login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002376
Least number of positive cubes needed to sum to n.
(Formerly M0466 N0170)
18
1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 1, 2, 3, 4, 5, 4, 5, 6, 2, 3, 4, 5, 6, 5, 6, 7, 3, 4, 5, 6, 7, 6, 7, 8, 4, 5, 6, 2, 3, 4, 5, 6, 5, 6, 7, 3, 4, 1, 2, 3, 4, 5, 6, 4, 5, 2, 3, 4, 5, 6, 7, 5, 6, 3, 3, 4, 5, 6, 7, 6, 7, 4, 4, 5, 2, 3, 4, 5, 6, 5, 5, 6, 3, 4, 5, 6, 7, 6, 6
OFFSET
1,2
COMMENTS
No terms are greater than 9, see A002804. - Charles R Greathouse IV, Aug 01 2013
REFERENCES
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 81.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A. R. Zornow, De compositione numerorum e cubis integris positivus, J. Reine Angew. Math., 14 (1835), 276-280.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Eric Weisstein's World of Mathematics, Cubic Number
FORMULA
The g.f. conjectured by Simon Plouffe in his 1992 dissertation,
-(-1-z-z^2-z^3-z^4-z^5-z^6+6*z^7)/(z+1)/(z^2+1)/(z^4+1)/(z-1)^2, is incorrect: the first wrong coefficient is that of z^26. - Robert Israel, Jun 30 2017
MAPLE
f:= proc(n) option remember;
min(seq(procname(n - i^3)+1, i=1..floor(n^(1/3))))
end proc:
f(0):= 0:
map(f, [$1..100]); # Robert Israel, Jun 30 2017
MATHEMATICA
CubesCnt[n_] := Module[{k = 1}, While[Length[PowersRepresentations[n, k, 3]] == 0, k++]; k]; Array[CubesCnt, 100] (* T. D. Noe, Apr 01 2011 *)
PROG
(Python)
from itertools import count
from sympy.solvers.diophantine.diophantine import power_representation
def A002376(n):
if n == 1: return 1
for k in count(1):
try:
next(power_representation(n, 3, k))
except:
continue
return k # Chai Wah Wu, Jun 25 2024
CROSSREFS
Cf. A000578, A003325 (numbers requiring 2 cubes), A047702 (numbers requiring 3 cubes), A047703 (numbers requiring 4 cubes), A047704 (numbers requiring 5 cubes), A046040 (numbers requiring 6 cubes), A018890 (numbers requiring 7 cubes), A018888 (numbers requiring 8 or 9 cubes), A055401 (cubes needed by greedy algorithm).
Sequence in context: A338481 A338492 A338458 * A055401 A053829 A033928
KEYWORD
nonn,nice
EXTENSIONS
More terms from Arlin Anderson (starship1(AT)gmail.com)
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy