login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A008805
Triangular numbers repeated.
72
1, 1, 3, 3, 6, 6, 10, 10, 15, 15, 21, 21, 28, 28, 36, 36, 45, 45, 55, 55, 66, 66, 78, 78, 91, 91, 105, 105, 120, 120, 136, 136, 153, 153, 171, 171, 190, 190, 210, 210, 231, 231, 253, 253, 276, 276, 300, 300, 325, 325, 351, 351, 378, 378, 406, 406, 435, 435
OFFSET
0,3
COMMENTS
Number of choices for nonnegative integers x,y,z such that x and y are even and x + y + z = n.
Diagonal sums of A002260, when arranged as a number triangle. - Paul Barry, Feb 28 2003
a(n) = number of partitions of n+4 such that the differences between greatest and smallest parts are 2: a(n-4) = A097364(n,2) for n>3. - Reinhard Zumkeller, Aug 09 2004
For n >= i, i=4,5, a(n-i) is the number of incongruent two-color bracelets of n beads, i from them are black (cf. A005232, A032279), having a diameter of symmetry. - Vladimir Shevelev, May 03 2011
Prefixing A008805 by 0,0,0,0 gives the sequence c(0), c(1), ... defined by c(n)=number of (w,x,y) such that w = 2x+2y, where w,x,y are all in {1,...,n}; see A211422. - Clark Kimberling, Apr 15 2012
Partial sums of positive terms of A142150. - Reinhard Zumkeller, Jul 07 2012
The sum of the first parts of the nondecreasing partitions of n+2 into exactly two parts, n >= 0. - Wesley Ivan Hurt, Jun 08 2013
Number of the distinct symmetric pentagons in a regular n-gon, see illustration for some small n in links. - Kival Ngaokrajang, Jun 25 2013
a(n) is the number of nonnegative integer solutions to the equation x + y + z = n such that x + y <= z. For example, a(4) = 6 because we have 0+0+4 = 0+1+3 = 0+2+2 = 1+0+3 = 1+1+2 = 2+0+2. - Geoffrey Critzer, Jul 09 2013
a(n) is the number of distinct opening moves in n X n tic-tac-toe. - I. J. Kennedy, Sep 04 2013
a(n) is the number of symmetry-allowed, linearly-independent terms at n-th order in the series expansion of the T2 X t2 vibronic perturbation matrix, H(Q) (cf. Opalka & Domcke). - Bradley Klee, Jul 20 2015
a(n-1) also gives the number of D_4 (dihedral group of order 4) orbits of an n X n square grid with squares coming in either of two colors and only one square has one of the colors. - Wolfdieter Lang, Oct 03 2016
Also, this sequence is the third column in the triangle of the coefficients of the sum of two consecutive Fibonacci polynomials F(n+1, x) and F(n, x) (n>=0) in ascending powers of x. - Mohammad K. Azarian, Jul 18 2018
In an n-person symmetric matching pennies game (a zero-sum normal-form game) with n > 2 symmetric and indistinguishable players, each with two strategies (viz. heads or tails), a(n-3) is the number of distinct subsets of players that must play the same strategy to avoid incurring losses (single pure Nash equilibrium in the reduced game). The total number of distinct partitions is A000217(n-1). - Ambrosio Valencia-Romero, Apr 17 2022
a(n) is the number of connected bipartite graphs with n+1 edges and a stable set of cardinality 2. - Christian Barrientos, Jun 15 2022
a(n) is the number of 132-avoiding odd Grassmannian permutations of size n+2. - Juan B. Gil, Mar 10 2023
Consider a regular n-gon with all diagonals drawn. Define a "layer" to be the set of all regions sharing an edge with the exterior. Removing a layer creates another layer. Count the layers, removing them until none remain. The number of layers is a(n-2). See illustration. - Christopher Scussel, Nov 07 2023
REFERENCES
H. D. Brunk, An Introduction to Mathematical Statistics, Ginn, Boston, 1960; p. 360.
LINKS
G. E. Andrews, M. Beck, and N. Robbins, Partitions with fixed differences between largest and smallest parts, arXiv preprint arXiv:1406.3374 [math.NT], 2014.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 46.
Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 19.
D. Opalka and W. Domcke, High-order expansion of T2xt2 Jahn-Teller potential energy surfaces in tetrahedral molecules, J. Chem. Phys., 132, 154108 (2010).
Vladimir Shevelev, A problem of enumeration of two-color bracelets with several variations, arXiv:0710.1370 [math.CO], 2007-2011.
FORMULA
G.f.: 1/((1-x)*(1-x^2)^2) = 1/((1+x)^2*(1-x)^3).
E.g.f.: (exp(x)*(2*x^2 +12*x+ 11) - exp(-x)*(2*x -5))/16.
a(-n) = a(-5+n).
a(n) = binomial(floor(n/2)+2, 2). - Vladimir Shevelev, May 03 2011
From Paul Barry, May 31 2003: (Start)
a(n) = ((2*n +5)*(-1)^n + (2*n^2 +10*n +11))/16.
a(n) = Sum_{k=0..n} ((k+2)*(1+(-1)^k))/4. (End)
From Paul Barry, Apr 16 2005: (Start)
a(n) = Sum_{k=0..n} floor((k+2)/2)*(1-(-1)^(n+k-1))/2.
a(n) = Sum_{k=0..floor(n/2)} floor((n-2k+2)/2). (End)
A signed version is given by Sum_{k=0..n} (-1)^k*floor(k^2/4). - Paul Barry, Aug 19 2003
a(n) = A108299(n-2,n)*(-1)^floor((n+1)/2) for n>1. - Reinhard Zumkeller, Jun 01 2005
a(n) = A004125(n+3) - A049798(n+2). - Carl Najafi, Jan 31 2013
a(n) = Sum_{i=1..floor((n+2)/2)} i. - Wesley Ivan Hurt, Jun 08 2013
a(n) = (1/2)*floor((n+2)/2)*(floor((n+2)/2)+1). - Wesley Ivan Hurt, Jun 08 2013
From Wesley Ivan Hurt, Apr 22 2015: (Start)
a(n) = a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
a(n) = (2*n +3 +(-1)^n)*(2*n +7 +(-1)^n)/32. (End)
a(n-1) = A054252(n,1) = A054252(n^2-1), n >= 1. See a Oct 03 2016 comment above. - Wolfdieter Lang, Oct 03 2016
a(n) = A000217(A008619(n)). - Guenther Schrack, Sep 12 2018
From Ambrosio Valencia-Romero, Apr 17 2022: (Start)
a(n) = a(n-1) if n odd, a(n) = a(n-1) + (n+2)/2 if n is even, for n > 0, a(0) = 1.
a(n) = (n+1)*(n+3)/8 if n odd, a(n) = (n+2)*(n+4)/8 if n is even, for n >= 0.
a(n) = A002620(n+2) - a(n-1), for n > 0, a(0) = 1.
a(n) = A142150(n+2) + a(n-1), for n > 0, a(0) = 1.
a(n) = A000217(n+3)/2 - A135276(n+3)/2. (End)
EXAMPLE
a(5) = 6, since (5) + 2 = 7 has three nondecreasing partitions with exactly 2 parts: (1,6),(2,5),(3,4). The sum of the first parts of these partitions = 1 + 2 + 3 = 6. - Wesley Ivan Hurt, Jun 08 2013
MAPLE
A008805:=n->(2*n+3+(-1)^n)*(2*n+7+(-1)^n)/32: seq(A008805(n), n=0..50); # Wesley Ivan Hurt, Apr 22 2015
MATHEMATICA
CoefficientList[Series[1/(1-x^2)^2/(1-x), {x, 0, 50}], x]
Table[Binomial[Floor[n/2] + 2, 2], {n, 0, 57}] (* Michael De Vlieger, Oct 03 2016 *)
PROG
(PARI) a(n)=(n\2+2)*(n\2+1)/2
(Haskell)
import Data.List (transpose)
a008805 = a000217 . (`div` 2) . (+ 1)
a008805_list = drop 2 $ concat $ transpose [a000217_list, a000217_list]
-- Reinhard Zumkeller, Feb 01 2013
(Magma) [(2*n+3+(-1)^n)*(2*n+7+(-1)^n)/32 : n in [0..50]]; // Wesley Ivan Hurt, Apr 22 2015
(Sage) [(2*n +3 +(-1)^n)*(2*n +7 +(-1)^n)/32 for n in (0..60)] # G. C. Greubel, Sep 12 2019
(GAP) List([0..60], n-> (2*n +3 +(-1)^n)*(2*n +7 +(-1)^n)/32); # G. C. Greubel, Sep 12 2019
(Python)
def A008805(n): return (m:=(n>>1)+1)*(m+1)>>1 # Chai Wah Wu, Oct 20 2023
CROSSREFS
Cf. A000217, A002260, A002620, A006918 (partial sums), A054252, A135276, A142150, A158920 (binomial trans.).
Sequence in context: A079551 A182843 A358558 * A188270 A026925 A343481
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy