login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A017841
Expansion of 1/(1-x^5-x^6-x^7-x^8-x^9-x^10).
1
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 7, 8, 10, 13, 17, 23, 29, 37, 47, 60, 78, 100, 129, 166, 213, 274, 351, 451, 580, 746, 960, 1233, 1584, 2035, 2615, 3362, 4321, 5554, 7138, 9173, 11789, 15150, 19471, 25025
OFFSET
0,11
COMMENTS
Number of compositions of n into parts p where 5 <= p <= 10. [Joerg Arndt, Jun 27 2013]
FORMULA
a(n) = a(n-5)+a(n-6)+a(n-7)+a(n-8)+a(n-9)+a(n-10), for n>9. - Vincenzo Librandi, Jun 27 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[5, 10]]), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 27 2013 *)
LinearRecurrence[{0, 0, 0, 0, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 0, 1, 1, 1, 1, 1}, 50] (* Robert G. Wilson v, Jun 27 2013 *)
PROG
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^5-x^6-x^7-x^8-x^9-x^10))); /* or */ I:=[1, 0, 0, 0, 0, 1, 1, 1, 1, 1]; [n le 10 select I[n] else Self(n-5)+Self(n-6)+Self(n-7)+Self(n-8)+Self(n-9)+Self(n-10): n in [1..70]]; // Vincenzo Librandi, Jun 27 2013
CROSSREFS
Sequence in context: A029012 A095699 A112192 * A304329 A111901 A316202
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy