login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A047460
Numbers that are congruent to {0, 1, 3, 4} mod 8.
1
0, 1, 3, 4, 8, 9, 11, 12, 16, 17, 19, 20, 24, 25, 27, 28, 32, 33, 35, 36, 40, 41, 43, 44, 48, 49, 51, 52, 56, 57, 59, 60, 64, 65, 67, 68, 72, 73, 75, 76, 80, 81, 83, 84, 88, 89, 91, 92, 96, 97, 99, 100, 104, 105, 107, 108, 112, 113, 115, 116, 120, 121, 123
OFFSET
1,3
FORMULA
From Colin Barker, May 14 2012: (Start)
a(n) = (-1/4+i/4)*((6+6*i)+(1+i)*(-1)^n+(-i)^n+i*i^n)+2*n where i=sqrt(-1).
G.f.: x^2*(1+2*x+x^2+4*x^3)/((1-x)^2*(1+x)*(1+x^2)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Vincenzo Librandi, May 16 2012
a(2k) = A047461(k), a(2k-1) = A047470(k). - Wesley Ivan Hurt, Jun 01 2016
Sum_{n>=2} (-1)^n/a(n) = Pi/8 + (2-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021
MAPLE
A047460:=n->(-1/4+I/4)*((6+6*I)+(1+I)*I^(2*n)+(-I)^n+I*I^n)+2*n: seq(A047460(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
MATHEMATICA
Select[Range[0, 3000], MemberQ[{0, 1, 3, 4}, Mod[#, 8]]&] (* Vincenzo Librandi, May 16 2012 *)
PROG
(Magma) I:=[0, 1, 3, 4, 8]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 16 2012
(PARI) my(x='x+O('x^100)); concat(0, Vec(x^2*(1+2*x+x^2+4*x^3)/((1-x)^2*(1+x)*(1+x^2)))) \\ Altug Alkan, Dec 24 2015
CROSSREFS
Sequence in context: A243064 A057549 A284392 * A193532 A068056 A006520
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy