login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A047458
Numbers that are congruent to {0, 3, 4} mod 8.
2
0, 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 28, 32, 35, 36, 40, 43, 44, 48, 51, 52, 56, 59, 60, 64, 67, 68, 72, 75, 76, 80, 83, 84, 88, 91, 92, 96, 99, 100, 104, 107, 108, 112, 115, 116, 120, 123, 124, 128, 131, 132, 136, 139, 140, 144, 147, 148, 152, 155, 156
OFFSET
1,2
FORMULA
G.f.: x^2*(3+x+4*x^2)/((1-x)^2*(1+x+x^2)). [Colin Barker, May 13 2012]
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 8*n/3-3-cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-4, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)
MAPLE
A047458:=n->8*n/3-3-cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047458(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 3, 4}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 3, 4, 8}, 90] (* Harvey P. Dale, May 31 2017 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 3, 4]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Union of A008586 and A017101. - Michel Marcus, Jun 01 2017
Sequence in context: A222395 A222269 A310011 * A004014 A243177 A113294
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy