login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A052539
a(n) = 4^n + 1.
87
2, 5, 17, 65, 257, 1025, 4097, 16385, 65537, 262145, 1048577, 4194305, 16777217, 67108865, 268435457, 1073741825, 4294967297, 17179869185, 68719476737, 274877906945, 1099511627777, 4398046511105, 17592186044417
OFFSET
0,1
COMMENTS
The sequence is a Lucas sequence V(P,Q) with P = 5 and Q = 4, so if n is a prime number, then V_n(5,4) - 5 is divisible by n. The smallest pseudoprime q which divides V_q(5,4) - 5 is 15.
Also the edge cover number of the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Sep 20 2017
First bisection of A000051, A049332, A052531 and A014551. - Klaus Purath, Sep 23 2020
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences 8(10) (2019).
Eric Weisstein's World of Mathematics, Edge Cover Number.
Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph.
FORMULA
a(n) = 4^n + 1.
a(n) = 4*a(n-1) - 3 = 5*a(n-1) - 4*a(n-2).
G.f.: (2 - 5*x)/((1 - 4*x)*(1 - x)).
E.g.f.: exp(x) + exp(4*x). - Mohammad K. Azarian, Jan 02 2009
From Klaus Purath, Sep 23 2020: (Start)
a(n) = 3*4^(n-1) + a(n-1).
a(n) = (a(n-1)^2 + 9*4^(n-2))/a(n-2).
a(n) = A178675(n) - 3. (End)
MAPLE
spec := [S, {S=Union(Sequence(Union(Z, Z, Z, Z)), Sequence(Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..30);
A052539:=n->4^n + 1; seq(A052539(n), n=0..30); # Wesley Ivan Hurt, Jun 12 2014
MATHEMATICA
Table[4^n + 1, {n, 0, 30}]
(* From Eric W. Weisstein, Sep 20 2017 *)
4^Range[0, 30] + 1
LinearRecurrence[{5, -4}, {2, 5}, 30]
CoefficientList[Series[(2-5x)/(1-5x+4x^2), {x, 0, 30}], x] (* End *)
PROG
(Magma) [4^n+1: n in [0..30] ]; // Vincenzo Librandi, Apr 30 2011
(PARI) a(n)=4^n+1 \\ Charles R Greathouse IV, Nov 20 2011
(Sage) [4^n+1 for n in (0..30)] # G. C. Greubel, May 09 2019
(GAP) List([0..30], n-> 4^n+1) # G. C. Greubel, May 09 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy