login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A167809
Number of admissible bases in the postage stamp problem for n denominations and h = 2 stamps.
6
1, 2, 5, 17, 65, 292, 1434, 7875, 47098, 305226, 2122983, 15752080, 124015310, 1031857395, 9041908204, 83186138212, 801235247145, 8059220936672, 84463182889321
OFFSET
1,2
COMMENTS
A basis 1 = b_1 < b_2 ... < b_n is admissible if all the values 1 <= x <= b_n are obtainable as a sum of at most h (not necessarily distinct) numbers in the basis.
Conjecture: a(n) >= A000108(n). - Michael Chu, May 16 2022
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C12.
LINKS
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.
M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp J 36(2) (1993) 117-126
Erich Friedman, Postage stamp problem
J. Kohonen, Early Pruning in the Restricted Postage Stamp Problem, arXiv preprint arXiv:1503.03416 [math.NT], 2015.
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377-380.
S. Mossige, Algorithms for Computing the h-Range of the Postage Stamp Problem, Math. Comp. 36 (1981) 575-582.
CROSSREFS
Other enumerations with different parameters: A167809 (h = 2), A167810 (h = 3), A167811 (h = 4), A167812 (h = 5), A167813 (h = 6), A167814 (h = 7).
For h = 2, cf. A008932.
Sequence in context: A052539 A123166 A008932 * A262449 A346506 A362967
KEYWORD
hard,more,nonn
AUTHOR
Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009
EXTENSIONS
a(17) from simple depth-first search by Jukka Kohonen, Jun 16 2016
a(18)-a(19) from depth-first search by Jukka Kohonen, Jul 30 2016
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy