login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A052716
Expansion of e.g.f. (x + 1 - sqrt(1-6*x+x^2))/2.
10
0, 2, 4, 36, 528, 10800, 283680, 9102240, 345058560, 15090727680, 747888422400, 41422381862400, 2535569103513600, 169983582318950400, 12386182292118835200, 974723523832041984000, 82385641026424479744000
OFFSET
0,2
COMMENTS
With a(n)=1, also number of labeled mobiles with n nodes and 2-colored internal (non-leaf) nodes - Christian G. Bower, Jun 07 2005
FORMULA
D-finite with recurrence: a(2)=4, a(1)=2, (n^2-1)*a(n) = (3+6*n)*a(n+1) - a(n+2).
a(n) = n!*A006318(n-1), n>=2. - R. J. Mathar, Oct 26 2013
MAPLE
spec := [S, {C=Union(B, Z), B=Prod(S, C), S=Union(Z, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
With[{nn=20}, CoefficientList[Series[(x+1-Sqrt[1-6x+x^2])/2, {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Apr 19 2020 *)
PROG
(Magma) [n le 1 select 1-(-1)^n else Factorial(n)*(&+[Catalan(k)*Binomial(n+k-1, n-k-1): k in [0..n-1]]): n in [0..30]]; // G. C. Greubel, May 28 2022
(SageMath) [bool(n==1)+factorial(n)*sum(binomial(n+k-1, n-k-1)*catalan_number(k) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, May 28 2022
CROSSREFS
Sequence in context: A189002 A304558 A215251 * A081976 A326932 A063184
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy