login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A087168
Expansion of (1 + 2*x)/(1 + 3*x + 4*x^2).
6
1, -1, -1, 7, -17, 23, -1, -89, 271, -457, 287, 967, -4049, 8279, -8641, -7193, 56143, -139657, 194399, -24569, -703889, 2209943, -3814273, 2603047, 7447951, -32756041, 68476319, -74404793, -50690897, 449691863, -1146312001, 1640168551, -335257649, -5554901257
OFFSET
0,4
COMMENTS
For positive n, a(n) equals 2^n times the permanent of the (2n) X (2n) tridiagonal matrix with 1/sqrt(2)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n > 3, equals -1 times the determinant of the (n-2) X (n-2) matrix with 2^2's along the superdiagonal, 3^2's along the main diagonal, 4^2's along the subdiagonal, etc., and 0's everywhere else. - John M. Campbell, Dec 01 2011
LINKS
FORMULA
G.f.: (1+2*x)/(1+3*x+4*x^2).
a(n) = -3*a(n-1) - 4*a(n-2); a(0)=1, a(1)=-1.
a(n) = Sum_{k=0..n} C(n+k,2*k)*(-2)^(n-k).
a(n) = -a(-1-n) * 2^(2*n+1) = A001607(2*n + 1) for all n in Z. - Michael Somos, Sep 19 2014
a(n) = (-2)^(n-1)*(2*ChebyshevU(n-2, 3/4) - ChebyshevU(n-1, 3/4)). - G. C. Greubel, Jun 09 2022
EXAMPLE
G.f. = 1 - x - x^2 + 7*x^3 - 17*x^4 + 23*x^5 - x^6 - 89*x^7 + 271*x^8 + ...
MATHEMATICA
CoefficientList[Series[(1+2x)/(1+3x+4x^2), {x, 0, 30}], x]
Table[-Det[Array[Sum[KroneckerDelta[#1, #2+q]*(q+3)^2, {q, -1, n-2}] &, {n-2, n-2}]], {n, 4, 50}] (* John M. Campbell, Dec 01 2011 *)
LinearRecurrence[{-3, -4}, {1, -1}, 40] (* Harvey P. Dale, Apr 23 2014 *)
PROG
(Magma)
A087168:= func< n | &+[ Binomial(n+k, 2*k)*(-2)^(n-k): k in [0..n] ] >;
[A087168(n): n in [0..35]];
(PARI) {a(n) = real( (-1 - quadgen(-7))^n )}; /* Michael Somos, Sep 19 2014 */
(SageMath)
def A087168(n): return (-2)^(n-1)*(2*chebyshev_U(n-2, 3/4) -chebyshev_U(n-1, 3/4))
[A087168(n) for n in (0..50)] # G. C. Greubel, Jun 09 2022
CROSSREFS
Sequence in context: A144695 A125244 A070416 * A247560 A215824 A239210
KEYWORD
easy,sign
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 22 2003
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy