login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A247560
a(n) = 3*a(n-1) - 4*a(n-2) with a(0) = a(1) = 1.
5
1, 1, -1, -7, -17, -23, -1, 89, 271, 457, 287, -967, -4049, -8279, -8641, 7193, 56143, 139657, 194399, 24569, -703889, -2209943, -3814273, -2603047, 7447951, 32756041, 68476319, 74404793, -50690897, -449691863, -1146312001, -1640168551, -335257649, 5554901257
OFFSET
0,4
LINKS
F. Beukers, The multiplicity of binary recurrences, Compositio Mathematica, Tome 40 (1980) no. 2, pp. 251-267. See Theorem 2, p. 259.
M. Mignotte, Propriétés arithmétiques des suites récurrentes, Besançon, 1988-1989, see p. 14. In French.
FORMULA
G.f.: (1 - 2*x) / (1 - 3*x + 4*x^2).
a(n) = 3*a(n-1) - 4*a(n-2) for all n in Z.
a(n) = a(-1-n) * 2^(2*n + 1) for all n in Z.
a(n) = (-1)^n * A087168(n) for all n in Z.
A247565(n) = 2^n + a(n) for all n in Z.
a(n) = A247487(2*n + 1) = A247564(2*n + 1) for all n in Z.
EXAMPLE
G.f. = 1 + x - x^2 - 7*x^3 - 17*x^4 - 23*x^5 - x^6 + 89*x^7 + 271*x^8 + ...
MAPLE
A247560:=n->simplify((1/14*I)*sqrt(7)*((3/2+(1/2*I)*sqrt(7))^n-(3/2-(1/2*I)*sqrt(7))^n)+1/2*((3/2+(1/2*I)*sqrt(7))^n+(3/2-(1/2*I)*sqrt(7))^n)): seq(A247560(n), n=0..40); # Wesley Ivan Hurt, Oct 02 2014
MATHEMATICA
a[ n_] := Re[ (1 - 1/Sqrt[-7]) (3 + Sqrt[-7])^n / 2^n];
LinearRecurrence[{3, -4}, {1, 1}, 40] (* Harvey P. Dale, Jun 13 2017 *)
PROG
(PARI) {a(n) = real( (1 + quadgen(-7))^n )};
(Haskell)
a247560 n = a247560_list !! n
a247560_list = 1 : 1 : zipWith (-) (map (* 3) $ tail a247560_list)
(map (* 4) a247560_list)
-- Reinhard Zumkeller, Sep 20 2014
(Sage)
[((1-1/sqrt(-7))*(3+sqrt(-7))^n/2^n).real() for n in range(34)] # Peter Luschny, Oct 02 2014 (after Somos)
(Magma) I:=[1, 1]; [n le 2 select I[n] else 3*Self(n-1) - 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 04 2018
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Michael Somos, Sep 19 2014
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy