login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A097076
Expansion of g.f. x/(1 - x - 3*x^2 - x^3).
14
0, 1, 1, 4, 8, 21, 49, 120, 288, 697, 1681, 4060, 9800, 23661, 57121, 137904, 332928, 803761, 1940449, 4684660, 11309768, 27304197, 65918161, 159140520, 384199200, 927538921, 2239277041, 5406093004, 13051463048, 31509019101, 76069501249, 183648021600
OFFSET
0,4
COMMENTS
Counts walks of length n between two vertices of a triangle, when a loop has been added at the third vertex.
a(n) is the center term of the 3 X 3 matrix [0,1,0; 0,0,1; 1,3,1]^n. - Gary W. Adamson, May 30 2008
Starting (1, 1, 4, 8, 21, ...) = row sums of triangle A157898. - Gary W. Adamson, Mar 08 2009
Convolution of Pell(n) = A000129(n) and (-1)^n. - Paul Barry, Oct 22 2009
a(n+1) is the number of ways to choose points on a 2 X n lattice eliminating the upper left and lower right corners such that the points are not adjacent to each other. (See A375726 for proof) - Yifan Xie, Aug 25 2024
a(n+1) is the number of compositions (ordered partitions) of n into parts 1, 2, and 3 where there are three kinds of part 2. - Joerg Arndt, Aug 27 2024
LINKS
J. Bodeen, S. Butler, T. Kim, X. Sun and S. Wang, Tiling a strip with triangles, El. J. Combinat. 21 (1) (2014) P1.7.
Mark Shattuck, Combinatorial Proofs of Some Formulas for Triangular Tilings, Journal of Integer Sequences, 17 (2014), #14.5.5.
FORMULA
a(n) = ( (1+sqrt(2))^n + (1-sqrt(2))^n - 2*(-1)^n )/4.
a(n) = a(n-1) + 3*a(n-2) + a(n-3). [corrected by Paul Curtz, Mar 04 2008]
a(n) = (Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^k)/2 - (-1)^n/2.
a(n) = (A001333(n) - (-1)^n)/2.
a(n) = Sum_{k=0..n} (-1)^k*Pell(n-k). - Paul Barry, Oct 22 2009
From R. J. Mathar, Jul 06 2011: (Start)
G.f.: x / ( (1+x)*(1-2*x-x^2) ).
a(n) + a(n+1) = A000129(n+1). (End)
E.g.f.: (exp(x)*cosh(sqrt(2)*x) - cosh(x) + sinh(x))/2. - Stefano Spezia, Mar 31 2024
MATHEMATICA
CoefficientList[Series[x/(1-x-3x^2-x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 3, 1}, {0, 1, 1}, 40] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
PROG
(Magma) [(Evaluate(DicksonFirst(n, -1), 2) -2*(-1)^n)/4: n in [0..40]]; // G. C. Greubel, Aug 18 2022
(SageMath) [(lucas_number2(n, 2, -1) -2*(-1)^n)/4 for n in (0..40)] # G. C. Greubel, Aug 18 2022
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 22 2004
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy