login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A103127
Numbers congruent to {-1, 1, 3, 5} mod 16.
4
1, 3, 5, 15, 17, 19, 21, 31, 33, 35, 37, 47, 49, 51, 53, 63, 65, 67, 69, 79, 81, 83, 85, 95, 97, 99, 101, 111, 113, 115, 117, 127, 129, 131, 133, 143, 145, 147, 149, 159, 161, 163, 165, 175, 177, 179, 181, 191, 193, 195, 197, 207, 209, 211, 213, 223, 225, 227, 229, 239, 241
OFFSET
1,2
COMMENTS
Agrees with A103192 for the first 511 terms, but then diverges (see comment in A103192). - Bruno Berselli, Dec 01 2016
LINKS
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp [pdf, ps].
FORMULA
a(n) = 2*A047527(n) + 1.
From R. J. Mathar, Aug 30 2008: (Start)
O.g.f.: x*(1 + 2*x + 2*x^2 + 10*x^3 + x^4)/((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-4) + 16. (End)
a(n) = 2*A047476(n+1) - 1. - Philippe Deléham, Dec 01 2016
MATHEMATICA
Select[Range[300], MemberQ[{1, 3, 5, 15}, Mod[#, 16]]&] (* Harvey P. Dale, Aug 10 2019 *)
PROG
(Haskell)
a103127 n = a103127_list !! (n-1)
a103127_list = [x | x <- [1..], x `mod` 16 `elem` [1, 3, 5, 15]]
-- Reinhard Zumkeller, Jul 21 2012
CROSSREFS
Sequence in context: A102582 A351296 A089168 * A103192 A097856 A071593
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 25 2005
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy