login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A107293
The (1,1)-entry of the matrix M^n, where M is the 5 X 5 matrix [[0,1,0,0,0],[0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1], [1,0,-1,1,1]].
18
0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 6, 9, 13, 19, 27, 39, 56, 81, 117, 169, 244, 352, 508, 733, 1058, 1527, 2204, 3181, 4591, 6626, 9563, 13802, 19920, 28750, 41494, 59887, 86433, 124746, 180042, 259849, 375032, 541272, 781201, 1127483, 1627261, 2348575
OFFSET
0,7
COMMENTS
Also the (1,2)-entries of M^n (n >= 1).
Characteristic polynomial of the matrix M is x^5 - x^4 - x^3 + x^2 - 1.
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-5) for n >= 5.
O.g.f: x^4/(1 - x - x^2 + x^3 - x^5). - R. J. Mathar, Dec 02 2007
MAPLE
a[0]:=0:a[1]:=0:a[2]:=0:a[3]:=0:a[4]:=1: for n from 5 to 45 do a[n]:=a[n-1]+a[n-2]-a[n-3]+a[n-5] od: seq(a[n], n=0..45);
MATHEMATICA
LinearRecurrence[{1, 1, -1, 0, 1}, {0, 0, 0, 0, 1}, 50] (* G. C. Greubel, Nov 03 2018 *)
PROG
(PARI) m=50; v=concat([0, 0, 0, 0, 1], vector(m-5)); for(n=6, m, v[n] = v[n-1] +v[n-2] -v[n-3] +v[n-5]); v \\ G. C. Greubel, Nov 03 2018
(Magma) I:=[0, 0, 0, 0, 1]; [n le 5 select I[n] else Self(n-1) +Self(n-2) -Self(n-3) + Self(n-5): n in [1..50]]; // G. C. Greubel, Nov 03 2018
CROSSREFS
Sequence in context: A351973 A212264 A174650 * A329693 A329976 A329703
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jun 08 2005
EXTENSIONS
Edited by N. J. A. Sloane, May 12 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy