login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A126632
a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks the digit 1, at least one of digits 2,3, at least one of digits 4,5,6 and at least one of digits 7,8,9.
3
9, 79, 669, 5431, 42189, 314119, 2251629, 15625591, 105563469, 697683559, 4529641389, 28986744151, 183339095949, 1148652643399, 7141191155949, 44118519949111, 271168742599629, 1659705919705639, 10123331198091309, 61571999920648471
OFFSET
1,1
FORMULA
a(n) = 18*6^n-45*5^n+48*4^n-27*3^n+8*2^n-1.
G.f.: -x*(720*x^5-1764*x^4+1408*x^3-585*x^2+110*x-9) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)). - Colin Barker, Feb 22 2015
EXAMPLE
a(8) = 15625591.
MAPLE
f:=n->18*6^n-45*5^n+48*4^n-27*3^n+8*2^n-1;
MATHEMATICA
LinearRecurrence[{21, -175, 735, -1624, 1764, -720}, {9, 79, 669, 5431, 42189, 314119}, 20] (* James C. McMahon, Dec 26 2024 *)
PROG
(PARI) Vec(-x*(720*x^5-1764*x^4+1408*x^3-585*x^2+110*x-9) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015
KEYWORD
nonn,base,easy
AUTHOR
Aleksandar M. Janjic and Milan Janjic, Feb 08 2007
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy