login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A152263
a(n) = ((8 + sqrt(6))^n + (8 - sqrt(6))^n)/2.
2
1, 8, 70, 656, 6436, 64928, 665560, 6883136, 71527696, 745221248, 7774933600, 81176105216, 847871534656, 8857730451968, 92547138221440, 967005845328896, 10104359508418816, 105583413105625088, 1103281758201710080
OFFSET
0,2
COMMENTS
Binomial transform of A152262. Inverse binomial transform of A152264. - Philippe Deléham, Dec 03 2008
FORMULA
From Philippe Deléham, Dec 03 2008: (Start)
a(n) = 16*a(n-1) - 58*a(n-2), n > 1; a(0)=1, a(1)=8.
G.f.: (1-8*x)/(1-16*x+58*x^2).
a(n) = Sum_{k=0..n} A098158(n,k)*8^(2k-n)*6^(n-k). (End)
MATHEMATICA
LinearRecurrence[{16, -58}, {1, 8}, 20] (* Harvey P. Dale, Jul 09 2021 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r6>:=NumberField(x^2-6); S:=[ ((8+r6)^n+(8-r6)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 03 2008
CROSSREFS
Sequence in context: A299355 A299175 A299938 * A142986 A123511 A322416
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008
EXTENSIONS
Extended beyond a(6) by Klaus Brockhaus, Dec 03 2008
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy