login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A152919
a(1)=1, for n>1, a(n) = n^2/4 + n/2 for even n, a(n) = n^2/4 + n - 5/4 for odd n.
1
1, 2, 4, 6, 10, 12, 18, 20, 28, 30, 40, 42, 54, 56, 70, 72, 88, 90, 108, 110, 130, 132, 154, 156, 180, 182, 208, 210, 238, 240, 270, 272, 304, 306, 340, 342, 378, 380, 418, 420, 460, 462, 504, 506, 550, 552, 598, 600, 648, 650, 700, 702, 754, 756, 810, 812, 868
OFFSET
1,2
FORMULA
From Chai Wah Wu, Jun 09 2020: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 6.
G.f.: x*(x^5 - x^4 - x - 1)/((x - 1)^3*(x + 1)^2). (End)
From Bernard Schott, Jun 10 2020: (Start)
Bisections are:
a(1) = 1 and a(2k+1) = A028552(k) for k >= 1,
a(2k) = A002378(k) for k >= 1, hence,
a(2k+2) = a(2k+1) + 2 for k >= 1. (End)
MATHEMATICA
a[n_] := If[n == 1, 1, If[Mod[n, 2] == 0, n^2/4 + n/2, n^2/4 + n - 5/4]];
Table[a[n], {n, 1, 100}]
CROSSREFS
Sequence in context: A167856 A293750 A162578 * A306564 A002088 A092249
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Dec 15 2008
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy