login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A157716
One-eighth of triangular numbers (integers only).
2
0, 15, 17, 62, 66, 141, 147, 252, 260, 395, 405, 570, 582, 777, 791, 1016, 1032, 1287, 1305, 1590, 1610, 1925, 1947, 2292, 2316, 2691, 2717, 3122, 3150, 3585, 3615, 4080, 4112, 4607, 4641, 5166, 5202, 5757, 5795, 6380, 6420, 7035, 7077, 7722, 7766, 8441
OFFSET
1,2
COMMENTS
From Lamine Ngom, Oct 27 2020: (Start)
Numbers of the form (4*k)^2-k (A157446) or (4*k)^2+k (A157474).
Also numbers k such that 1+64*k is a square. (End)
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^(32*n))*(1 - q^(32*n-15))*(1 - q^(32*n-17)) = 1 - q^15 - q^17 + q^62 + q^66 - q^141 - q^147 + + - - .... - Peter Bala, Dec 24 2024
FORMULA
G.f.: x^2*(15+2*x+15*x^2)/((1+x)^2*(1-x)^3 ). [Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; checked and corrected by R. J. Mathar, Sep 16 2009]
a(n) = (2*n-1 + 7/8*(-1)^n)^2 -1/64. - Robert Israel, Apr 20 2014
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Wesley Ivan Hurt, Nov 10 2020
Sum_{n>=2} 1/a(n) = 16 - (sqrt(2*(2+sqrt(2))) + sqrt(2) + 1)*Pi. - Amiram Eldar, Mar 17 2022
EXAMPLE
The first three members of A000217 that are divisible by 8 are A000217(0), A000217(15) and A000217(16), so a(1) = A000217(0)/8 = 0, a(2) = A000217(15)/8 = 15, a(3) = A000217(16)/8 = 17.
MAPLE
seq((2*n-1 + 7/8*(-1)^n)^2 - 1/64, n = 1 .. 1000); # Robert Israel, Apr 20 2014
MATHEMATICA
Array[(2 # - 1 + 7/8*(-1)^#)^2 - 1/64 &, 46] (* or *)
Rest@ CoefficientList[Series[x^2*(15 + 2 x + 15 x^2)/((1 + x)^2*(1 - x)^3), {x, 0, 46}], x] (* Michael De Vlieger, Nov 05 2020 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition edited by N. J. A. Sloane, Mar 08 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy