login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A159920
Sums of the antidiagonals of Sundaram's sieve (A159919).
6
4, 14, 32, 60, 100, 154, 224, 312, 420, 550, 704, 884, 1092, 1330, 1600, 1904, 2244, 2622, 3040, 3500, 4004, 4554, 5152, 5800, 6500, 7254, 8064, 8932, 9860, 10850, 11904, 13024, 14212, 15470, 16800, 18204, 19684, 21242, 22880, 24600, 26404
OFFSET
2,1
COMMENTS
For every n >= 2, a(n) is the sum of numbers in the (n-1)-th antidiagonal of the Sundaram sieve. (It is not clear why the offset was set to 2 rather than 1.) Thus, if T(j, k) is the element in row j and column k of the Sundaram sieve, we have a(n) = Sum_{i = 1..n-1} T(i, n-i) = Sum_{i = 1..n-1} (2*i*(n-i) + i + (n-i)) = (n - 1)*n*(n + 4)/3 for the sum of the numbers in the (n-1)-th antidiagonal. - Petros Hadjicostas, Jun 19 2019
LINKS
Andrew Baxter, Sundaram's Sieve.
Julian Havil, Sundaram's Sieve, Plus Magazine, March 2009.
New Zealand Maths, Newletter 18, October 2002.
Wikipedia, Sundaram's Sieve.
FORMULA
a(n) = (n - 1)*n*(n + 4)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 2*A005581(n), n > 1.
a(n) = Sum_{i=1..n-1} i*(i + 3). - Wesley Ivan Hurt, Oct 19 2013
From G. C. Greubel, Oct 03 2022: (Start)
G.f.: 2*x^2*(2 - x)/(1-x)^4.
E.g.f.: (1/3)*x^2*(6 + x)*exp(x). (End)
EXAMPLE
For n = 5, (4*5*9)/3 = 60. Indeed, T(1, 4) + T(2, 3) + T(3, 2) + T(4, 1) = 13 + 17 + 17 + 13 = 60 for the sum of the terms in the 4th antidiagonal of the Sundaram sieve.
MAPLE
A159920:=n->n*(n-1)*(n+4)/3; seq(A159920(k), k=2..100); # Wesley Ivan Hurt, Oct 19 2013
MATHEMATICA
Table[(n-1)*n*(n+4)/3, {n, 2, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *)
LinearRecurrence[{4, -6, 4, -1}, {4, 14, 32, 60}, 61] (* Harvey P. Dale, Apr 23 2011 *)
PROG
(Magma) [n*(n-1)*(n+4)/3: n in [2..60]]; // G. C. Greubel, Oct 03 2022
(SageMath) [n*(n-1)*(n+4)/3 for n in range(2, 60)] # G. C. Greubel, Oct 03 2022
CROSSREFS
Sequence in context: A001740 A129395 A023539 * A036486 A023627 A023649
KEYWORD
nonn,easy
AUTHOR
Russell Walsmith, Apr 26 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy