login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A190912
Partial sums of pentanacci numbers (A000322).
1
1, 2, 3, 4, 5, 10, 19, 36, 69, 134, 263, 516, 1013, 1990, 3911, 7688, 15113, 29710, 58407, 114824, 225737, 443786, 872459, 1715208, 3372009, 6629194, 13032651, 25621516, 50370573, 99025938, 194679867, 382730540, 752428429, 1479235342, 2908100111, 5717174284
OFFSET
1,2
FORMULA
a(1)=1, a(2)=2, a(3)=3, a(4)=4, a(5)=5, a(6)=10, a(n)=2*a(n-1)-a(n-6) [From Harvey P. Dale, May 23 2011]
G.f. x*( 1-x^2-2*x^3-3*x^4 ) / ( (x-1)*(x^5+x^4+x^3+x^2+x-1) ). - R. J. Mathar, May 26 2011
MATHEMATICA
Accumulate[LinearRecurrence[{1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, 50]] (* or *) LinearRecurrence[{2, 0, 0, 0, 0, -1}, {1, 2, 3, 4, 5, 10}, 50](* Harvey P. Dale, May 23 2011 *)
CROSSREFS
Sequence in context: A099161 A369592 A033077 * A306108 A282033 A111665
KEYWORD
nonn,easy
AUTHOR
Harvey P. Dale, May 23 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy