login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A271899
a(n) = 1 + 471*n/140 + 1594*n^2/315 + 73*n^3/16 + 161*n^4/60 + 83*n^5/80 + 61*n^6/240 + n^7/28 + 11*n^8/5040.
1
1, 18, 162, 927, 3906, 13248, 38256, 97614, 225819, 482482, 965250, 1827189, 3299556, 5720976, 9574128, 15531132, 24508917, 37735938, 56831698, 83900619, 121641894, 173477040, 243696960, 337630410, 461835855, 624318786, 834776658, 1104873697, 1448547912, 1882352736, 2425835808
OFFSET
0,2
COMMENTS
Values of Ehrhart polynomial for a facet of the Birkhoff polytope B_4.
LINKS
Jesús A. De Loera, Fu Liu, and Ruriko Yoshida, A generating function for all semi-magic squares and the volume of the Birkhoff polytope, J. Algebraic Combin. 30 (2009), no. 1, 113-139.
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = (n+4)*(n+3)*(n+2)*(n+1)*(11*n^4+70*n^3+196*n^2+269*n+210)/5040.
G.f.: (1 + 9*x + 36*x^2 + 33*x^3 + 9*x^4)/(1 - x)^9. - Ilya Gutkovskiy, Apr 16 2016
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Wesley Ivan Hurt, Jul 02 2020
MAPLE
f:=n-> 1 + 471*n/140 + 1594*n^2/315 + 73*n^3/16 + 161*n^4/60 + 83*n^5/80 + 61*n^6/240 + n^7/28 + 11*n^8/5040;
[seq(f(n), n=0..30)];
MATHEMATICA
CoefficientList[Series[(1 + 9 x + 36 x^2 + 33 x^3 + 9 x^4)/(1 - x)^9, {x, 0, 30}], x] (* Michael De Vlieger, Apr 16 2016 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 18, 162, 927, 3906, 13248, 38256, 97614, 225819}, 40] (* Harvey P. Dale, Oct 06 2023 *)
PROG
(Python)
A271899_list, m = [], [88, -128, 61, -8]+[1]*5
for _ in range(100):
A271899_list.append(m[-1])
for i in range(8):
m[i+1] += m[i] # Chai Wah Wu, Apr 16 2016
(PARI) lista(nn) = for(n=0, nn, print1((1/5040)*(n+4)*(n+3)*(n+2)*(n+1)*(11*n^4+70*n^3+196*n^2+269*n+210), ", ")); \\ Altug Alkan, Apr 16 2016
CROSSREFS
Sequence in context: A222914 A171642 A158808 * A128797 A008418 A099196
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 16 2016
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy