login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A370880
Natural numbers repeated 3 times are taken in parts of successive lengths 1,2,3,..., and a(n) is the sum of the numbers in the part with length n.
1
1, 2, 6, 13, 23, 39, 61, 89, 126, 172, 227, 294, 373, 464, 570, 691, 827, 981, 1153, 1343, 1554, 1786, 2039, 2316, 2617, 2942, 3294, 3673, 4079, 4515, 4981, 5477, 6006, 6568, 7163, 7794, 8461, 9164, 9906, 10687, 11507, 12369, 13273, 14219, 15210, 16246
OFFSET
1,2
FORMULA
a(n) = Sum_{i=A000217(n-1)+1..A000217(n)} A002264(i+2).
Let r = n mod 3, then we get
a(n) = n*(n^2+3)/6 if r = 0;
(n*(n^2+3)+2)/6 if r = 1;
(n*(n^2+3)-2)/6 if r = 2.
G.f.: x*(x^4-x^3+3*x^2-x+1)/((x^2+x+1)*(x-1)^4).
EXAMPLE
The parts and resulting sums begin:
Part Sum = a(n)
n=1: 1, ....................... 1
n=2: 1, 1, .................... 2
n=3: 2, 2, 2, ................. 6
n=4: 3, 3, 3, 4, .............. 13
n=5: 4, 4, 5, 5, 5, ........... 23
n=6: 6, 6, 6, 7, 7, 7, ........ 39
n=7: 8, 8, 8, 9, 9, 9, 10, ..... 61
MATHEMATICA
LinearRecurrence[{3, -3, 2, -3, 3, -1}, {1, 2, 6, 13, 23, 39}, 46] (* James C. McMahon, Apr 22 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Nicolay Avilov, Mar 04 2024
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy