タグ

mathに関するbasiのブックマーク (27)

  • サービス提供終了のお知らせ

    日頃より、Momoたろうインターネットクラブをご愛顧いただきまして誠にありがとうございます。 「ホームページサービス」のサービス提供は2015年11月30日をもちまして終了させていただきました。 これまで長らくご利用いただき、誠にありがとうございました。 今後も、皆様によりよいサービスをご提供させていただけるよう、サービス品質向上に努めて参りますので、何卒、ご理解いただけますようお願 い申し上げます。 <Momoたろうインターネットクラブをご契約のお客様へ> 後継サービスとして「userwebサービス」を提供させていただいております。 詳しくは、以下のリンクをご参照ください。 ▼「userwebサービス」のご案内 http://www.ejworks.info/userhp/mmtr/index.html 今後ともMomoたろうインターネットクラブをご愛顧いただけますようお願い申し上げます

  • 数学の学習支援ソフト「Microsoft Mathematics」v4.0が更新、UIが日本語化

  • 解析概論 - Wikisource

    削除提案中 現在、この項目の一部の版または全体について、削除の手続きに従って、削除が提案されています。 削除についての議論は削除依頼の該当のセクションで行われています(このページのノートも参照して下さい)。削除の議論中はこのお知らせを除去しないで下さい。 この項目の執筆者の方々へ: まだ削除は行われていません。削除に対する議論に参加し、削除の方針に該当するかをどうか検討して下さい。 著作権侵害のおそれこの項目は著作権侵害が指摘され、現在審議中です。 審議の結果、該当する投稿以降の版全てもしくはこの項目自体が履歴も含めて削除される可能性があります。編集は極力控えてください。著作権上問題のない自分の投稿内容が削除される可能性のある方は、早めに控えを取っておいてください。 該当する投稿をされた方へ: ウィキソースでは、著作権上問題のない投稿のみを受け付けることになっています。他人の著作物を使うと

  • 平均と標準偏差

    ある集団についてのデータがどのように分布しているかを表すものとして、その集団の代表値★(中心の値)を示す平均値及びそのばらつき具合を示す散布度がある。平均には算術平均が、散布度には標準偏差がよく用いられている。 1.度数分布表・ヒストグラム データがどのように分布しているかその実態を把握するには、データをその大きさによりいくつかの階級に区分し、その階級ごとの個数 (度数) をカウントして表にした度数分布表、あるいは、それを棒グラフにして表わしたヒストグラムが適している (表1、図1) 。 例えば、年齢別人口や従業者規模別事業所数など多くの統計表は度数分布表の形で作成され、また、年齢別人口をヒストグラムにした人口ピラミッドは人口構造の分析等によく用いられている。 2.平均値★ 一般に平均値には、単純平均 が多く使われている。平均値は通常μ(ミュー) と表示される。 3.標準偏差

  • 比率の検定

    母比率の検定(大標の場合) 母集団の中で,ある属性に対して事象の起こる割合を事象の母比率といいます.この母比率に関する仮説を,標値から検定することを考えます. 母比率がの二項母集団から抽出された大きさの標を とします.ここで, とします.このとき, とすると,は標中であるものの個数を表す統計量で, は事象の標比率といいます. そのとき,母比率について, を既知の値として,帰無仮説 : 「」,対立仮説 : 「 」 を検定することが問題となります. 母比率の二項母集団から大きさの標 をとり, とするとは二項分布に従います.ここでが十分大きいときにはラプラスの定理によって,は近似的に正規分布 に従い,標比率 は近似的に正規分布 に従います.よって,標準化を行うと

  • 平均 - Wikipedia

    平均(へいきん、英: mean, average, 独: Mittelwert, 仏: moyenne)または平均値(へいきんち、英: mean value, average value)とは、数学・統計学において、数の集合やデータの中間的な値を指す。欧米語の原意の中間(値)などと和訳することは少ない。 狭い意味での中間値にとどまらず、算術平均(相加平均)・幾何平均(相乗平均)・調和平均・対数平均など様々な種類で用いられる。一般的には特に算術平均を指し、集合の要素の総和を要素数で割ったものである[1][2]。 科学観測や社会調査から得られるデータでは、算術平均を代表値の一つとして用いる。算術平均が中央値、最頻値、中点値と比べてデータの特徴をよく表すものかどうかを検討する必要がある。正規分布に近い場合は算術平均と標準偏差を用いることは適切だが、そうでない分布の場合は、算術平均値が度数の多い値

  • 数学関数を表示するAjaxライブラリMathJax | Web活メモ帳

    使用方法はhtmlに以下のコードを入力すれば表示されるようです。 <script src="/MathJax/MathJax.js"> // // This script call is what gets MathJax loaded and running // MathJax.Hub.Config({ jax: ["input/TeX","output/HTML-CSS"], // input is TeX and output is HTML-CSS format extensions: ["tex2jax.js"], // use the tex2jax preprocessor tex2jax: { // inlineMath: [['$','$'],['\\(','\\)']], // uncomment to use $...$ for inline math proces

    数学関数を表示するAjaxライブラリMathJax | Web活メモ帳
    basi
    basi 2010/11/01
  • 紙を半分に折る限界は何回なのか―Thread Good Job

    basi
    basi 2010/09/16
  • VIPPERな俺 : マイナス×マイナス=プラス ←これ理論的に説明できる人いる?

    basi
    basi 2010/03/22
  • Webで数式を簡単に使う方法 | Okumura's Blog

    以前Webで数式を書く方法について書いたが,今なら Google Chart Tools のAPIを使うほうが簡単。例: <img src="http://chart.apis.google.com/chart?cht=tx&amp;chl=x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}" alt="" /> URL中に使えない文字は%16進2桁で表記する。例えばスペースは試した限りではそのまま使えたが用心するなら%20とする。詳しくはGoogleの解説 Mathematical (TeX) Formulas 参照。 問題点:ピクセルサイズの指定はできるが,標準の2倍の大きさにしたいという指定はできないみたい。

  • 「足して9になる数字」が四則演算すべての検算を驚くほど加速する理由

    Author:くるぶし(読書猿) twitter:@kurubushi_rm カテゴリ別記事一覧 新しいが出ました。 読書猿『独学大全』ダイヤモンド社 2020/9/29書籍版刊行、電子書籍10/21配信。 ISBN-13 : 978-4478108536 2021/06/02 11刷決定 累計200,000部(紙+電子) 2022/10/26 14刷決定 累計260,000部(紙+電子) 紀伊國屋じんぶん大賞2021 第3位 アンダー29.5人文書大賞2021 新刊部門 第1位 第2の著作です。 2017/11/20刊行、4刷まで来ました。 読書猿 (著) 『問題解決大全』 ISBN:978-4894517806 2017/12/18 電書出ました。 Kindle版・楽天Kobo版・iBooks版 韓国語版 『문제해결 대전』、繁体字版『線性VS環狀思考』も出ています。 こちらは10刷

    「足して9になる数字」が四則演算すべての検算を驚くほど加速する理由
  • 海外のコンピュータ科学者による「マンガでわかる統計学」の書評 : お茶妖精

    2009年07月30日 海外のコンピュータ科学者による「マンガでわかる統計学」の書評 ↑特定の層ではよく知られてることですが、これの英語版が発売されており、Mark Chu-Carrollさんというコンピュータ科学者の人(Googleで働いてるそうです)がブログにて書評をしていたので訳します。 最近、No Starch Press(出版社)のある人物からThe Manga Guide to Statisticsという翻訳書評を頼まれ、数週間前にを受け取ったがゆっくり読む暇がなかった。 Manga Guidesとは聞いたことがない人にとって面白いアイデアだろう。日ではcomic books(Manga)が普及していて、アメリカより社会的にも受け入れられている。地下鉄で大人が漫画を読んでいても珍しいことではなく、漫画には普通の芸術慣習の中に独特な形式があり、Manga Guidesとは

    海外のコンピュータ科学者による「マンガでわかる統計学」の書評 : お茶妖精
  • Firefox上で“MathML”を利用した数式を作成できる「FireMath」NOT SUPPORTED

  • 類似度と距離 - CatTail Wiki*

    2つのデータが似ている度合いを,類似度の大きさや距離の近さといった数値にしてあらわすことで,クラスタ分析や,k-近傍法,多次元尺度構成法(MDS)をはじめとするいろいろな分析を行うことが可能となる. ここでは,よく知られている類似度や距離について述べる. 類似度という概念は,2つの集合の要素がまさにどれだけ似ているかを数量化したものであり,距離とは,要素同士の離れ具合,従って非類似度とちかい概念と考えてもよい. 参考までに数学における距離の概念の定義を示すと, 距離空間の定義 Sを1つの空でない集合とし,dをSで定義された2変数の実数値関数 d(SxS) → R が,以下の4条件(距離の公理) D1 : (非負性) 任意のx,y∈Sに対して d(x,y)≧0. D2 : (非退化性) x,y∈Sに対し d(x,y)=0  ⇔ x=y. D3 : (対称性) 任意のx,y∈Sに対して d(x

    類似度と距離 - CatTail Wiki*
  • 確率空間 - Wikipedia

    根元事象が無数にある場合は、確率をラプラスの古典的確率で定義することができない。 例えば、コインを投げて表が出れば 10 円もらえ、裏が出れば 10 円を失うといった賭けにおいて、表に賭け続けていくという問題を考える。現実的には疲れたらそこで終了となるが、これを半永久的に毎日賭け続けていったらどうなるかという確率分布が考えられる(運命の確率)。この場合、数学的に定式化するには、すべてのコインの出現パターンを集める必要がある。すなわち 表表表表… 裏表表表… 表裏表表… 裏裏表表… 表表裏表… … が根元事象全体となる。 これらの根元事象全体は非可算無限個ある。(なぜなら、事象 ω に割り当てる確率変数値 0.a1a2…(2)(添え字の (2) は2進法表示を表す)を、ω の i回目が表なら ai = 1、裏なら ai = 0 とする。このとき、確率変数値全体からなる集合は区間 [0, 1]

    basi
    basi 2009/08/03
  • ノルム - Wikipedia

    この項目では、線型代数学と解析学について説明しています。体論については「ノルム (体論)」を、イデアルについては「イデアルのノルム(英語版)」を、群論については「ノルム (群論)(英語版)」を、記述集合論におけるノルムについては「prewellordering(英語版)」をご覧ください。 この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ノルム" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2016年3月) 解析学において、ノルム (英: norm[1], 独: Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」

  • 数学記号の表 - Wikipedia

    数学記号」はこの項目へ転送されています。ウィキペディアにおける数式の書き方については「m:Help:Displaying a formula/ja|ヘルプ:数式の書き方」をご覧ください。 数学的概念を記述する記号を数学記号という。数学記号は、数学上に抽象された概念を簡潔に表すためにしばしば用いられる。 数学記号が示す対象やその定義は、基的にそれを用いる人に委ねられるため、同じ記号に見えても内容が異なっているということがあれば、逆に、異なって見える記号が同じ対象を示しているということもある[注 1]。従って項に示す数学記号とそれに対応する数学的対象は、数多くある記号や概念のうち、特に慣用されうるものに限られる。

  • Amazon.co.jp: 公式集 (モノグラフ 24): 春日正文: 本

    Amazon.co.jp: 公式集 (モノグラフ 24): 春日正文: 本
  • 東京工業大学 情報理工学院 数理・計算科学系

    大岡山地区の建物 大学正門より,桜並木のウッドデッキを通り,右手の芝生をつっきる小径が西8号館,西7号館に続くみちです. 大岡山西8号館(E棟,W棟): キャンパスマップの18, 19番の建物にあたります.館の西隣りに位置しています.正面玄関をはいったところは3階です. E棟においでの方は廊下をはいってすぐ左手のエレベータをご利用下さい. W棟にはじめておいでの方は十分に注意して下さい.E棟とW棟を繋いでいる通路は3階と10階にしかありません.E棟のエレベータを利用すると迷子になります.正面玄関から廊下をまっすぐにおいでになり,奥の右手にあるエレベータをご利用下さい. 西7号館:キャンパスマップの17番の建物にあたります.西8号館から,建物を二つ挟んだ並びにあります.芝生から向う場合,左手に館を見ながら進み,館がとぎれたあたりの右手にある小さな建物が西7号館です.橋を渡ってはいったと

  • 階差数列

    ※ n≧2という制限は重要です。 答案作成の途中経過では,n≧2の場合とn=1の場合を分けなければなりません。 n=1のときはa1でその値は問題文に書かれています。 ※ n≧2とn=1を統一して,n≧1で共通の関数形となるのがほとんどです。 補足説明 元の数列がn次式で表わされるとき,その階差数列は n-1次式になります。左の例では元の数列anは2次式,階差数列bnは1次式です。 元の数列が,等比数列になっているときは,階差数列はそれ以上簡単になりません。 例 1, 2, 4, 8,16, 32 1, 2, 4, 8, 16 階差数列の項番号は,元の数列の小さい方の番号と同じです。

    basi
    basi 2009/07/25
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy