Vés al contingut

σ-àlgebra de Borel

De la Viquipèdia, l'enciclopèdia lliure

La σ-àlgebra de Borel associada a un espai topològic T és la més petita de les σ-àlgebres a T que contenen tots els oberts de T;[1] en altres paraules, és la σ-àlgebra generada pels conjunts oberts de T. Els elements de la σ-àlgebra de Borel s'anomenen conjunts de Borel o conjunts borelians o simplement borelians. L'existència i unicitat de la σ-àlgebra mínima es demostra construint-la com la intersecció de totes les σ-àlgebres que contenen T, ja que el resultat d'una intersecció d'un nombre arbitrari de σ-àlgebres és també una σ-àlgebra.[2]

De manera equivalent, es pot definir la σ-àlgebra de Borel com la menor de les σ-àlgebres que contenen tots els subconjunts tancats de T.

σ-àlgebra de Borel sobre ℝ

[modifica]

Un exemple particularment important és la σ-àlgebra de Borel al conjunt dels nombres reals definida com la més petita de les σ-àlgebres a que conté tots els intervals,[3] i que es designa per . Altres caracteritzacions alternatives d'aquesta σ-àlgebra són (entre altres) les següents:[4] És la mínima σ-àlgebra a que conté:

  • Tots els intervals oberts.
  • Tots els intervals tancats.
  • Tots els intervals de la forma amb .
  • totes les semirectes de la forma .
  • totes les semirectes de la forma .

Això és degut al fet que qualsevol classe d'intervals es pot obtenir a partir de les altres mitjançant operacions numerables. Per exemple, . Encara més, utilitzant la densitat dels nombres racionals es pot veure que en les col·leccions d'intervals anterior n'hi ha prou amb considerar els intervals amb extrems racionals: per exemple, és la σ-àlgebra generada per la família .[5] Es diu que és una σ-àlgebra separable[6] o numerablement generada[7]

σ-àlgebra de Borel sobre ℝn

[modifica]

De manera anàloga és defineix la σ-àlgebra de Borel sobre , que es designa per : és la menor σ-àlgebra que conté tots els oberts de (o tots els tancats), i també admet diverses famílies de generadors, per exemple, els productes d'intervals oberts o semioberts , etc., que a més poden agafar-se amb d'extrems racionals [5]

Vegeu també

[modifica]

Referències

[modifica]
  1. Dellacherie, Claude.. Probabilités et potentiel. Ed. entièrement refondue. París: Hermann, ©1975-<c1992>. ISBN 2705613722. 
  2. Schilling, René L.. Measures, integrals and martingales. Cambridge: Cambridge University Press, 2005, p. 19. ISBN 9780511647987. 
  3. Bonet, Eduard. Espais de probabilitat finits. Barcelona: Editorial lavínia, S. A., 1969, p. 132. 
  4. Schilling, René L.. Measures, integrals and martingales. Cambridge: Cambridge University Press, 2005, p. 18. ISBN 9780511647987. 
  5. 5,0 5,1 Schilling, René L.. Measures, integrals and martingales. Cambridge: Cambridge University Press, 2005, p. 22. ISBN 9780511647987. 
  6. Neveu, Jacques. Bases mathématiques du calcul des probabilités. 2ème édition revue et corrigée. París: Masson et Cie, 1970, p. 14. ISBN 2-225-61787-2. 
  7. Ash, Robert B.. Probability and measure theory. 2a edició. San Diego: Harcourt/Academic Press, 2000, p. 121. ISBN 0-12-065202-1. 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy