Vés al contingut

Distribució gaussiana inversa generalitzada

De la Viquipèdia, l'enciclopèdia lliure
Infotaula distribució de probabilitatGeneralized inverse Gaussian
Funció de densitat de probabilitat
Probability density plots of GIG distributions
Tipusfamília exponencial i distribució de probabilitat contínua Modifica el valor a Wikidata
EpònimCarl Friedrich Gauß i Herbert Sichel (en) Tradueix Modifica el valor a Wikidata
Paràmetresa > 0, b > 0, p real
Suportx > 0
fdp
Variància

En teoria i estadística de probabilitats, la distribució gaussiana inversa generalitzada (GIG) és una família de tres paràmetres de distribucions de probabilitat contínues amb funció de densitat de probabilitat.

on Kp és una funció de Bessel modificada del segon tipus, a > 0, b > 0 i p un paràmetre real. S'utilitza àmpliament en geoestadística, lingüística estadística, finances, etc. Aquesta distribució va ser proposada per primera vegada per Étienne Halphen.[1][2] Va ser redescoberta i popularitzada per Ole Barndorff-Nielsen, que la va anomenar distribució gaussiana inversa generalitzada. Les seves propietats estadístiques es discuteixen a les notes de la conferència de Bent Jørgensen.[3]

Propietats

[modifica]

Per fixació i , podem expressar alternativament la distribució GIG com on és el paràmetre de concentració mentre és el paràmetre d'escala.

Barndorff-Nielsen i Halgreen van demostrar que la distribució GIG és infinitament divisible.

Característica d'una variable aleatòria es dona com (per a una derivació de la funció característica, vegeu materials suplementaris de[4])

per on denota el nombre imaginari.

Referències

[modifica]
  1. Seshadri, V. «Halphen's laws». A: Kotz. Encyclopedia of Statistical Sciences, Update Volume 1 (en anglès). Nova York: Wiley, 1997, p. 302–306. 
  2. Perreault, L.; Bobée, B.; Rasmussen, P. F. Journal of Hydrologic Engineering, 4, 3, 1999, pàg. 189. DOI: 10.1061/(ASCE)1084-0699(1999)4:3(189).
  3. Jørgensen, Bent. Statistical Properties of the Generalized Inverse Gaussian Distribution (en anglès). 9. New York–Berlin: Springer-Verlag, 1982 (Lecture Notes in Statistics). ISBN 0-387-90665-7. 
  4. Pal, Subhadip; Gaskins, Jeremy Journal of Statistical Computation and Simulation, 92, 16, 23-05-2022, pàg. 3430–3451. DOI: 10.1080/00949655.2022.2067853. ISSN: 0094-9655.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy