Name Mode Size
R 040000
data 040000
inst 040000
man 040000
src 040000
tests 040000
vignettes 040000
.Rbuildignore 100644 0 kb
.gitignore 100644 0 kb
DESCRIPTION 100644 2 kb
NAMESPACE 100644 3 kb
NEWS 100644 3 kb
README.md 100644 4 kb
miRSM.Rproj 100644 0 kb
README.md
# miRSM R package # Introduction This package provides several utility functions to study miRNA sponge or ceRNA modules at single-sample and multi-sample levels, including popular methods for inferring gene modules (candidate miRNA sponge or ceRNA modules), and two functions to identify miRNA sponge modules at single-sample and multi-sample levels, as well as several functions to conduct modular analysis of miRNA sponge modules. # Installation ```{r echo=FALSE, results='hide', message=FALSE} if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager") BiocManager::install("miRSM") ``` # A quick example to use miRSM package ```{r echo=FALSE, results='hide', message=FALSE} # Load miRSM package suppressPackageStartupMessages(library(miRSM)) # Load BRCA sample data data(BRCASampleData) # Identifying gene co-expression modules using WGCNA modulegenes_WGCNA <- module_WGCNA(ceRExp[, seq_len(150)], mRExp[, seq_len(150)]) # Identifying miRNA sponge modules using sensitivity RV coefficient (SRVC) miRSM_WGCNA_SRVC <- miRSM(miRExp, ceRExp, mRExp, miRTarget, modulegenes_WGCNA, method = "SRVC", SMC.cutoff = 0.01, RV_method = "RV") # Identifying sample-specific miRNA sponge modules nsamples <- 3 modulegenes_all <- module_igraph(ceRExp[, 151:300], mRExp[, 151:300]) modulegenes_exceptk <- lapply(seq(nsamples), function(i) module_WGCNA(ceRExp[-i, seq(150)], mRExp[-i, seq(150)])) miRSM_SRVC_all <- miRSM(miRExp, ceRExp[, 151:300], mRExp[, 151:300], miRTarget, modulegenes_all, method = "SRVC", SMC.cutoff = 0.01, RV_method = "RV") miRSM_SRVC_exceptk <- lapply(seq(nsamples), function(i) miRSM(miRExp[-i, ], ceRExp[-i, seq(150)], mRExp[-i, seq(150)], miRTarget, modulegenes_exceptk[[i]], method = "SRVC", SMC.cutoff = 0.01, RV_method = "RV")) Modulegenes_all <- miRSM_SRVC_all[[2]] Modulegenes_exceptk <- lapply(seq(nsamples), function(i) miRSM_SRVC_exceptk[[i]][[2]]) Modules_SS <- miRSM_SS(Modulegenes_all, Modulegenes_exceptk) # Functional analysis of miRNA sponge modules miRSM_WGCNA_SRVC_genes <- miRSM_WGCNA_SRVC[[2]] miRSM_WGCNA_SRVC_FEA <- module_FA(miRSM_WGCNA_SRVC_genes, Analysis.type ="FEA") miRSM_WGCNA_SRVC_DEA <- module_FA(miRSM_WGCNA_SRVC_genes, Analysis.type = "DEA") # Cancer enrichment analysis of miRNA sponge modules miRSM.CEA.pvalue <- module_CEA(ceRExp, mRExp, BRCA_genes, miRSM_WGCNA_SRVC_genes) # Validation of miRNA sponge interactions in miRNA sponge modules Groundtruthcsv <- system.file("extdata", "Groundtruth_high.csv", package="miRSM") Groundtruth <- read.csv(Groundtruthcsv, header=TRUE, sep=",") miRSM.Validate <- module_Validate(miRSM_WGCNA_SRVC_genes, Groundtruth) # Co-expression analysis of miRNA sponge modules miRSM_WGCNA_Coexpress <- module_Coexpress(ceRExp, mRExp, miRSM_WGCNA_SRVC_genes, resample = 10, method = "mean", test.method = "t.test") # Distribution analysis of sharing miRNAs miRSM_WGCNA_share_miRs <- share_miRs(miRExp, miRTarget, miRSM_WGCNA_SRVC_genes) miRSM_WGCNA_miRdistribute <- module_miRdistribute(miRSM_WGCNA_share_miRs) # Predicting miRNA-target interactions miRSM_WGCNA_miRtarget <- module_miRtarget(miRSM_WGCNA_share_miRs, miRSM_WGCNA_SRVC_genes) # Identifying miRNA sponge interactions miRSM_WGCNA_miRsponge <- module_miRsponge(miRSM_WGCNA_SRVC_genes) ``` # License GPL-3

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy