File:Sphere symmetry group td.png
Original file (649 × 625 pixels, file size: 28 KB, MIME type: image/png)
Captions
Summary
[edit]DescriptionSphere symmetry group td.png |
English: Symmetry Group Td or *332 on the sphere (Tetrahedral reflective symmetry).
Yellow triangle is fundamental domain. Numbers are the reflection symmetry order at each node. This full figure also represents the edges of the polyhedron (V4.6.6) tetrakis hexahedron expanded onto the surface of a sphere. |
||
Date | 9 October 2005 (original upload date) | ||
Source | Own work | ||
Author | Tomruen at English Wikipedia | ||
Other versions |
|
Licensing
[edit]Public domainPublic domainfalsefalse |
This work has been released into the public domain by its author, Tomruen at English Wikipedia. This applies worldwide. In some countries this may not be legally possible; if so: Tomruen grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.Public domainPublic domainfalsefalse |
Original upload log
[edit]- 2005-10-09 21:56 Tomruen 659×619 (26193 bytes) Symmetry Group T<sub>d</sub> or *332 on the sphere (Tetrahedral reflective symmetry). Yellow triangle is fundamental domain. Numbers are the reflection symmetry order at each node. This full figure also represents the edges of the polyhedron (V4.6.6) [[
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 23:41, 29 November 2014 | 649 × 625 (28 KB) | Tomruen (talk | contribs) | trans | |
23:41, 6 September 2012 | 649 × 625 (27 KB) | Tomruen (talk | contribs) | fix | ||
23:32, 6 September 2012 | 649 × 625 (23 KB) | Tomruen (talk | contribs) | replace | ||
09:42, 19 October 2011 | 659 × 619 (26 KB) | BotMultichillT (talk | contribs) | {{BotMoveToCommons|en.wikipedia|year={{subst:CURRENTYEAR}}|month={{subst:CURRENTMONTHNAME}}|day={{subst:CURRENTDAY}}}} == {{int:filedesc}} == {{Information |description={{en|1=Symmetry Group T<sub>d</sub> or *332 on the sphere (Tetrahedral reflective sym |
You cannot overwrite this file.
File usage on Commons
The following page uses this file:
File usage on other wikis
The following other wikis use this file:
- Usage on ca.wikipedia.org
- Usage on en.wikipedia.org
- Schwarz triangle
- Uniform polyhedron
- Point groups in three dimensions
- List of spherical symmetry groups
- Icosahedral symmetry
- Octahedral symmetry
- Tetrahedral symmetry
- Dihedral symmetry in three dimensions
- Cyclic symmetry in three dimensions
- Exceptional object
- Polyhedral group
- Hyperoctahedral group
- Coxeter notation
- Template:3d point group navigator
- Point groups in four dimensions
- User:Tomruen/aaa
- User:Tomruen/A5
- Usage on eo.wikipedia.org
- Usage on es.wikipedia.org
- Poliedro uniforme
- Simetría icosaédrica
- Plantilla:Grupo de puntos en 3d
- Simetría tetraédrica
- Simetría octaédrica
- Anexo:Grupos de simetría esférica
- Simetría cíclica en tres dimensiones
- Simetría diédrica en tres dimensiones
- Grupos de puntos en tres dimensiones
- Grupo poliédrico
- Notación de Coxeter
- Triángulo de Schwarz
- Usage on fa.wikipedia.org
- Usage on fi.wikipedia.org
- Usage on fr.wikipedia.org
- Usage on id.wikipedia.org
- Daftar grup simetri bola hingga
- Templat:Titik navigator grup 3D
- Pengguna:Klasüo/bak pasir/Arsip 15
- Grup titik dalam tiga dimensi
- Pengguna:Klasüo/bak pasir/Arsip 16
- Pengguna:Klasüo/bak pasir/Arsip 17
- Simetri siklik dalam tiga dimensi
- Pengguna:Klasüo/bak pasir/Arsip 18
- Simetri dihedral dalam tiga dimensi
- Pengguna:Klasüo/bak pasir/Arsip 19
View more global usage of this file.
Metadata
This file contains additional information such as Exif metadata which may have been added by the digital camera, scanner, or software program used to create or digitize it. If the file has been modified from its original state, some details such as the timestamp may not fully reflect those of the original file. The timestamp is only as accurate as the clock in the camera, and it may be completely wrong.
Horizontal resolution | 37.8 dpc |
---|---|
Vertical resolution | 37.8 dpc |
Software used |