Přeskočit na obsah

Axiom spočetného výběru

Z Wikipedie, otevřené encyklopedie

Axiom spočetného výběru (zkráceně ()) je matematické tvrzení z oblasti teorie množin, které je slabší verzí axiomu výběru.

Axiom spočetného výběru lze vyslovit v kterékoli z běžně používaných axiomatizací teorie množin (ZF, NBG či KM) a to například takto:

Na každém spočetném souboru neprázdných množin existuje selektor (tj. zobrazení takové, že pro všechna ).

Axiom spočetného výběru je dostatečně silné tvrzení na to, aby pomocí něj bylo možno dokázat většinu základních poznatků matematické analýzy, které nějakou formu axiomu výběru potřebují. Takovými poznatky jsou například:

  • sjednocení spočetného souboru spočetných množin je spočetná množina
  • Heineho věta

Vztah k jiným tvrzením

[editovat | editovat zdroj]

Axiom spočetného výběru vyplývá z (obyčejného) axiomu výběru. Je dokonce důsledkem ještě slabšího tvrzení zvaného axiom závislého výběru. Opačné implikace neplatí, tj. axiom spočetného výběru je ostře slabší než axiom závislého výběru (a tedy než axiom výběru).

Nedokazatelnost axiomu spočetného výběru v ZF prokázal Paul Cohen.

Související články

[editovat | editovat zdroj]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy