skip to main content
research-article

Algorithm 985: Simple, Efficient, and Relatively Accurate Approximation for the Evaluation of the Faddeyeva Function

Published: 29 August 2017 Publication History

Abstract

We present a new simple algorithm for efficient, and relatively accurate computation of the Faddeyeva function w(z). The algorithm carefully exploits previous approximations by Hui et al. (1978) and Humlíček (1982) along with asymptotic expressions from Laplace continued fractions. Over a wide and fine grid of the complex argument, z = x + iy, numerical results from the present approximation show a maximum relative error less than 4.0 × 10−5 for both real and imaginary parts of w while running in a relatively shorter execution time than other competitive techniques. In addition to the calculation of the Faddeyeva function, w, partial derivatives of the real and imaginary parts of the function can easily be calculated and returned as optional output.

Supplemental Material

ZIP File
Software for Simple, Efficient, and Relatively Accurate Approximation for the Evaluation of the Faddeyeva Function

References

[1]
M. Abramowitz and I. A. Stegun. 1964. Handbook of Mathematical Functions. New York: National Bureau of Standards, AMS55.
[2]
S. M. Abrarov, B. M. Quine, and R. K. Jagpal. 2010a. Rapidly convergent series for high-accuracy calculation of the Voigt function. J. Quant. Spectrosc. 8 Radiat. Transfer. 111, 372--375.
[3]
S. M. Abrarov, B. M. Quine, and R. K. Jagpal. 2010b. High-accuracy approximation of the complex probability function by Fourier expansion of exponential multiplier. Computer Physics Communications 181, 876--882.
[4]
B. H. Armstrong. 1967. Spectrum line profiles: The Voigt function. J. Quant. Spectrosc. 8 Radiat. Transfer. 7, 61--88.
[5]
W. Boyer and A. E. Lynas-Gray. 2014. Evaluation of the Voigt function to arbitrary precision. Mon. Not. R. Astron. Soc. 444, 2555--2560.
[6]
V. N. Faddeyeva and N. M. Terent'ev. 1961. Tables of Values of the Function for Complex Argument, Gosud. Izdat. The.-Teor. Lit, Moscow, 195; English Transl, Pergamon Press, New York.
[7]
W. Gautschi. 1969. Algorithm 363-complex error function. Commun. ACM 12, 635.
[8]
W. Gautschi. 1970. Efficient computation of the complex error function. SIAM J. Numer. Anal. 7, 187--198.
[9]
A. K. Hui, B. H. Armstrong, and A. A. Wray. 1978. Rapid computation of the Voigt and complex error functions. J. Quant. Spectrosc. 8 Radiat. Transfer. 19, 509--516.
[10]
J. Humlíček. 1979. An efficient method for evaluation of the complex probability function: The Voigt function and its derivatives. J. Quant. Spectrosc. Radiat. Transfer. 21, 309--313.
[11]
J. Humlíček. 1982. Optimized computation of the Voigt and complex probability functions. J. Quant. Spectrosc. Radiat. Transfer. 27, 4, 437--444.
[12]
K. Imai, M. Suzuki, and C. Takahashi. 2010. Evaluation of Voigt algorithms for the ISS/SMILES L2 data processing system. Adv. Space Research. 45. 669--675.
[13]
H. Jiménez-Domínguez, H. Flores-Llamas, A. Cabral-Prieto, and A. Bravo-Ortega. 1987. A simple relationship between the Voigt integral and the plasma dispersion function. additional methods to estimate the Voigt integral. Nucl. Instrum. Meth. Phys. Res. A. 278, 625--626.
[14]
A. H. Karp. 1978. Efficient computation of spectral line shapes. J. Quant. Spectrosc. Radiat. Transfer. 20, 379--384.
[15]
M. Kuntz. 1997. A new implementation of the Humlíček algorithm for the calculation of the Voigt profile function. J. Quant. Spectrosc. Radiat. Transfer. 57, 6, 819--824.
[16]
K. L. Letchworth and D. C. Benner. 2007. Rapid and accurate calculation of the Voigt function. J. Quant. Spectrosc. Radiat. Transfer. 107, 173--192.
[17]
F. G. Lether and P. R. Wenston. 1991. The numerical computation of the Voigt function by a corrected midpoint quadrature rule for (-∞, ∞). J. Computat. Appl. Math. 34, 75--92.
[18]
J. M. Luque, M. D. Calzada, and M. Saez. 2005. A new procedure for obtaining the Voigt function dependent upon the complex error function. J. Quant. Spectrosc. Radiat. Transfer. 94, 151--161.
[19]
G. P. M. Poppe and C. M. J. Wijers. 1990a. More efficient computation of the complex error function. ACM Trans. Math. Softw. 16, 1, 38--46.
[20]
G. P. M. Poppe and C. M. J. Wijers. 1990b. Algorithm 680, evaluation of the complex error function. ACM Trans. Math. Softw. 16, 1, 47.
[21]
W. Ruyten. 2004. Comment on “A new implementation of the Humlíček algorithm for the calculation of the Voigt profile function” by M. Kuntz [JQSRT 57(6)(1997) 819-824]. J. Quant. Spectrosc. Radiat. Transfer. 86, 2, 231--233.
[22]
F. Schreier. 1992. The Voigt and complex error function: A comparison of computational methods. J. Quant. Spectrosc. Radiat. Transfer. 48, 5/6, 743--762.
[23]
F. Schreier. 2011. Optimized implementations of rational approximations for the Voigt and complex error function. J. Quant. Spectrosc. 8 Radiat. Transfer. 112, 6, 1010--1025.
[24]
Z. Shippony and W. G. Read. 1993. A highly accurate Voigt function algorithm. J. Quant. Spectrosc. Radiat. Transfer. 50, 635--646.
[25]
J. A. C. Weideman. 1994. Computation of the complex error function. SIAM J. Numer. Anal. 31, 5, 1497--1518.
[26]
R. J. Wells. 1999. Rapid approximation to the Voigt/Faddeeva function and its derivatives. J. Quant. Spectrosc. Radiat. Transfer. 62, 29--48.
[27]
C. Young. 1965. Calculation of the absorption coefficient for lines with combined Doppler and Lorentz broadening. J. Quant. Spectrosc. Radiat. Transfer. 5, 549--552.
[28]
M. R. Zaghloul. 2007. On the calculation of the Voigt line-profile: A single proper integral with a damped sine integrand. Mon. Not. R. Astron. Soc. 375, 3, 1043--1048.
[29]
M. R. Zaghloul and A. N. Ali. 2011. Algorithm 916: Computing the Faddeyeva and voigt functions. ACM Trans. Math. Softw. 38, 2, 1--22.
[30]
M. R. Zaghloul. 2015. A simple reform for treating the loss of accuracy of Humlíček's w4 algorithm near the real axis. arXiv:1505.05596v1 [astro-ph.IM].

Cited By

View all
  • (2025)Simulation study of precision measurement of highly charged state heavy ion double electron recombination spectra based on high-intensity heavy-ion accelerator facilityActa Physica Sinica10.7498/aps.74.2024158974:4(043101)Online publication date: 2025
  • (2024) PyExoCross : a Python program for generating spectra and cross-sections from molecular line lists RAS Techniques and Instruments10.1093/rasti/rzae0163:1(257-287)Online publication date: 24-Apr-2024
  • (2024)Efficient numerical algorithms for multi-precision and multi-accuracy calculation of the error functions and Dawson integral with complex argumentsNumerical Algorithms10.1007/s11075-023-01727-297:2(869-887)Online publication date: 20-Feb-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

ACM Transactions on Mathematical Software  Volume 44, Issue 2
June 2018
242 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/3132683
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 August 2017
Accepted: 01 June 2017
Revised: 01 May 2017
Received: 01 December 2015
Published in TOMS Volume 44, Issue 2

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. Fortran
  2. Matlab
  3. Function evaluation
  4. accuracy
  5. complex probability function

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)26
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Simulation study of precision measurement of highly charged state heavy ion double electron recombination spectra based on high-intensity heavy-ion accelerator facilityActa Physica Sinica10.7498/aps.74.2024158974:4(043101)Online publication date: 2025
  • (2024) PyExoCross : a Python program for generating spectra and cross-sections from molecular line lists RAS Techniques and Instruments10.1093/rasti/rzae0163:1(257-287)Online publication date: 24-Apr-2024
  • (2024)Efficient numerical algorithms for multi-precision and multi-accuracy calculation of the error functions and Dawson integral with complex argumentsNumerical Algorithms10.1007/s11075-023-01727-297:2(869-887)Online publication date: 20-Feb-2024
  • (2023)Two-photon double ionization with finite pulses: Application of the virtual sequential model to heliumPhysical Review A10.1103/PhysRevA.108.013114108:1Online publication date: 20-Jul-2023
  • (2023) Spatially resolved broadband absorption spectroscopy measurements of temperature and multiple species (NH, OH, NO, and NH ) in atmospheric-pressure premixed ammonia/methane/air flames Fuel10.1016/j.fuel.2022.126073332(126073)Online publication date: Jan-2023
  • (2023)Calculation of Fresnel integrals of real and complex arguments up to 28 significant digitsNumerical Algorithms10.1007/s11075-023-01654-296:2(489-506)Online publication date: 14-Sep-2023
  • (2021) Windowed multipole representation of -matrix cross sections Physical Review C10.1103/PhysRevC.103.064610103:6Online publication date: 14-Jun-2021
  • (2020)Terahertz-field-induced near-cutoff even-order harmonics in a femtosecond laserPhysical Review A10.1103/PhysRevA.102.063102102:6Online publication date: 3-Dec-2020
  • (2020)Evaluation of Abramowitz functions in the right half of the complex planeJournal of Computational Physics10.1016/j.jcp.2019.109169405:COnline publication date: 15-Mar-2020
  • (2019)Unified lensing and kinematic analysis for any elliptical mass profileMonthly Notices of the Royal Astronomical Society10.1093/mnras/stz1796488:1(1387-1400)Online publication date: 1-Jul-2019
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy