About the Project
14 Legendre and Related FunctionsReal Arguments

§14.7 Integer Degree and Order

Contents
  1. §14.7(i) μ=0
  2. §14.7(ii) Rodrigues-Type Formulas
  3. §14.7(iii) Reflection Formulas
  4. §14.7(iv) Generating Functions

§14.7(i) μ=0

For n=0,1,2,,

14.7.1 𝖯n0(x)=𝖯n(x)=Pn0(x)=Pn(x),
x,

where Pn(x) is the Legendre polynomial of degree n. For additional properties of Pn(x) see Chapter 18.

14.7.2 𝖰n0(x)=𝖰n(x)=12Pn(x)ln(1+x1x)Wn1(x),

where W1(x)=0, and for n1,

14.7.3 Wn1(x)=s=0n1(n+s)!(ψ(n+1)ψ(s+1))2s(ns)!(s!)2(x1)s;

equivalently,

14.7.4 Wn1(x)=k=1n1kPk1(x)Pnk(x).
14.7.5 W0(x) =1,
W1(x) =32x,
W2(x) =52x223.

§14.7(ii) Rodrigues-Type Formulas

For m=0,1,2,, and n=0,1,2,,

14.7.8 𝖯nm(x) =(1)m(1x2)m/2dmdxm𝖯n(x),
14.7.9 𝖰nm(x) =(1)m(1x2)m/2dmdxm𝖰n(x),
14.7.10 𝖯nm(x)=(1)m+n(1x2)m/22nn!dm+ndxm+n(1x2)n.
14.7.11 Pnm(x) =(x21)m/2dmdxmPn(x),
14.7.12 Qnm(x) =(x21)m/2dmdxmQn(x),
14.7.13 Pn(x) =12nn!dndxn(x21)n,
14.7.14 Pnm(x) =(x21)m/22nn!dm+ndxm+n(x21)n,
14.7.15 Pmm(x) =(2m)!2mm!(x21)m/2.

When m is even and mn, 𝖯nm(x) and Pnm(x) are polynomials of degree n. Also,

14.7.16 𝖯nm(x)=Pnm(x)=0,
m>n.

§14.7(iii) Reflection Formulas

14.7.17 𝖯nm(x) =(1)nm𝖯nm(x),
14.7.18 𝖰n±m(x) =(1)nm1𝖰n±m(x).

§14.7(iv) Generating Functions

When 1<x<1 and |h|<1,

14.7.19 n=0𝖯n(x)hn=(12xh+h2)1/2,
14.7.20 n=0𝖰n(x)hn=1(12xh+h2)1/2ln(xh+(12xh+h2)1/2(1x2)1/2).

When 1<x<1 and |h|>1,

14.7.21 n=0𝖯n(x)hn1=(12xh+h2)1/2.

When x>1, (14.7.19) applies with |h|<x(x21)1/2. Also, with the same conditions

14.7.22 n=0Qn(x)hn=1(12xh+h2)1/2ln(xh+(12xh+h2)1/2(x21)1/2).

Lastly, when x>1, (14.7.21) applies with |h|>x+(x21)1/2.

For other generating functions see Magnus et al. (1966, pp. 232–233) and Rainville (1960, pp. 163–165, 168, 170–171, 184).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy