About the Project
17 q-Hypergeometric and Related FunctionsProperties

Β§17.7 Special Cases of Higher Ο•sr Functions

Contents
  1. Β§17.7(i) Ο•22 Functions
  2. Β§17.7(ii) Ο•23 Functions
  3. Β§17.7(iii) Other Ο•sr Functions

Β§17.7(i) Ο•22 Functions

q-Analog of Bailey’s F12⁑(βˆ’1) Sum

17.7.1 Ο•22⁑(a,q/aβˆ’q,b;q,βˆ’b)=(a⁒b,b⁒q/a;q2)∞(b;q)∞.

q-Analog of Gauss’s F12⁑(βˆ’1) Sum

17.7.2 Ο•22⁑(a2,b2a⁒b⁒q12,βˆ’a⁒b⁒q12;q,βˆ’q)=(a2⁒q,b2⁒q;q2)∞(q,a2⁒b2⁒q;q2)∞.

Sum Related to (17.6.4)

17.7.3 Ο•22⁑(c2/b2,b2c,c⁒q;q2,q)=12⁒(b2,q;q2)∞(c,c⁒q;q2)∞⁒((c/b;q)∞(b;q)∞+(βˆ’c/b;q)∞(βˆ’b;q)∞).

Β§17.7(ii) Ο•23 Functions

q-Pfaff–SaalschΓΌtz Sum

Nonterminating Form of the q-SaalschΓΌtz Sum

17.7.5 Ο•23⁑(a,b,ce,f;q,q)+(q/e,a,b,c,q⁒f/e;q)∞(e/q,a⁒q/e,b⁒q/e,c⁒q/e,f;q)βˆžβ’Ο•23⁑(a⁒q/e,b⁒q/e,c⁒q/eq2/e,q⁒f/e;q,q)=(q/e,f/a,f/b,f/c;q)∞(a⁒q/e,b⁒q/e,c⁒q/e,f;q)∞,

where e⁒f=a⁒b⁒c⁒q.

F.Β H.Β Jackson’s Terminating q-Analog of Dixon’s Sum

17.7.6 Ο•23⁑(qβˆ’2⁒n,b,cq1βˆ’2⁒n/b,q1βˆ’2⁒n/c;q,q2βˆ’nb⁒c)=(b,c;q)n⁒(q,b⁒c;q)2⁒n(q,b⁒c;q)n⁒(b,c;q)2⁒n.

Continued Fractions

For continued-fraction representations of a ratio of Ο•23 functions, see Cuyt et al. (2008, pp.Β 399–400).

Β§17.7(iii) Other Ο•sr Functions

q-Analog of Dixon’s F23⁑(1) Sum

17.7.7 Ο•34⁑(a,βˆ’q⁒a12,b,cβˆ’a12,a⁒q/b,a⁒q/c;q,q⁒a12b⁒c)=(a⁒q,q⁒a12/b,q⁒a12/c,a⁒q/(b⁒c);q)∞(a⁒q/b,a⁒q/c,q⁒a12,q⁒a12/(b⁒c);q)∞.

Gasper–Rahman q-Analog of Watson’s F23 Sum

17.7.8 Ο•78⁑(Ξ»,q⁒λ12,βˆ’q⁒λ12,a,b,c,βˆ’c,λ⁒q/c2Ξ»12,βˆ’Ξ»12,λ⁒q/a,λ⁒q/b,λ⁒q/c,βˆ’Ξ»β’q/c,c2;q,βˆ’Ξ»β’qa⁒b)=(λ⁒q,c2/Ξ»;q)∞⁒(a⁒q,b⁒q,c2⁒q/a,c2⁒q/b;q2)∞(λ⁒q/a,λ⁒q/b;q)∞⁒(q,a⁒b⁒q,c2⁒q,c2⁒q/(a⁒b);q2)∞,

where Ξ»=βˆ’c⁒(a⁒b/q)12.

Andrews’ q-Analog of the Terminating Version of Watson’s F23 Sum (16.4.6)

17.7.9 Ο•34⁑(qβˆ’n,a⁒qn,c,βˆ’c(a⁒q)12,βˆ’(a⁒q)12,c2;q,q)={0,nΒ odd,cn⁒(q,a⁒q/c2;q2)n/2(a⁒q,c2⁒q;q2)n/2,nΒ even.

Gasper–Rahman q-Analog of Whipple’s F23 Sum

17.7.10 Ο•78⁑(βˆ’c,q⁒(βˆ’c)12,βˆ’q⁒(βˆ’c)12,a,q/a,c,βˆ’d,βˆ’q/d(βˆ’c)12,βˆ’(βˆ’c)12,βˆ’c⁒q/a,βˆ’a⁒c,βˆ’q,c⁒q/d,c⁒d;q,c)=(βˆ’c,βˆ’c⁒q;q)∞⁒(a⁒c⁒d,a⁒c⁒q/d,c⁒d⁒q/a,c⁒q2/(a⁒d);q2)∞(c⁒d,c⁒q/d,βˆ’a⁒c,βˆ’c⁒q/a;q)∞.

Andrews’ q-Analog of the Terminating Version of Whipple’s F23 Sum (16.4.7)

17.7.11 Ο•34⁑(qβˆ’n,qn+1,c,βˆ’ce,c2⁒q/e,βˆ’q;q,q)=q(n+12)⁒(e⁒qβˆ’n,e⁒qn+1,c2⁒q1βˆ’n/e,c2⁒qn+2/e;q2)∞(e,c2⁒q/e;q)∞.

First q-Analog of Bailey’s F34⁑(1) Sum

17.7.12 Ο•34⁑(a,a⁒q,b2⁒q2⁒n,qβˆ’2⁒nb,b⁒q,a2⁒q2;q2,q2)=an⁒(βˆ’q,b/a;q)n(βˆ’a⁒q,b;q)n.

Second q-Analog of Bailey’s F34⁑(1) Sum

17.7.13 Ο•34⁑(a,a⁒q,b2⁒q2⁒nβˆ’2,qβˆ’2⁒nb,b⁒q,a2;q2,q2)=an⁒(βˆ’q,b/a;q)n⁒(1βˆ’b⁒qnβˆ’1)(βˆ’a,b;q)n⁒(1βˆ’b⁒q2⁒nβˆ’1).

F.Β H.Β Jackson’s q-Analog of Dougall’s F67⁑(1) Sum

17.7.14 Ο•78⁑(a,q⁒a12,βˆ’q⁒a12,b,c,d,e,qβˆ’na12,βˆ’a12,a⁒q/b,a⁒q/c,a⁒q/d,a⁒q/e,a⁒qn+1;q,q)=(a⁒q,a⁒q/(b⁒c),a⁒q/(b⁒d),a⁒q/(c⁒d);q)n(a⁒q/b,a⁒q/c,a⁒q/d,a⁒q/(b⁒c⁒d);q)n,

where a2⁒q=b⁒c⁒d⁒e⁒qβˆ’n.

Limiting Cases of (17.7.14)

17.7.15 Ο•56⁑(a,q⁒a12,βˆ’q⁒a12,b,c,da12,βˆ’a12,a⁒q/b,a⁒q/c,a⁒q/d;q,a⁒qb⁒c⁒d)=(a⁒q,a⁒q/(b⁒c),a⁒q/(b⁒d),a⁒q/(c⁒d);q)∞(a⁒q/b,a⁒q/c,a⁒q/d,a⁒q/(b⁒c⁒d);q)∞,

and when d=qβˆ’n,

17.7.16 Ο•56⁑(a,q⁒a12,βˆ’q⁒a12,b,c,qβˆ’na12,βˆ’a12,a⁒q/b,a⁒q/c,a⁒qn+1;q,a⁒qn+1b⁒c)=(a⁒q,a⁒q/(b⁒c);q)n(a⁒q/b,a⁒q/c;q)n.

Bailey’s Nonterminating Extension of Jackson’s Ο•78 Sum

17.7.17 Ο•78⁑(a,q⁒a12,βˆ’q⁒a12,b,c,d,e,fa12,βˆ’a12,a⁒q/b,a⁒q/c,a⁒q/d,a⁒q/e,a⁒q/f;q,q)βˆ’ba⁒(a⁒q,c,d,e,f,b⁒q/a,b⁒q/c,b⁒q/d,b⁒q/e,b⁒q/f;q)∞(a⁒q/b,a⁒q/c,a⁒q/d,a⁒q/e,a⁒q/f,b⁒c/a,b⁒d/a,b⁒e/a,b⁒f/a,b2⁒q/a;q)βˆžΓ—Ο•78⁑(b2/a,q⁒b⁒aβˆ’12,βˆ’q⁒b⁒aβˆ’12,b,b⁒c/a,b⁒d/a,b⁒e/a,b⁒f/ab⁒aβˆ’12,βˆ’b⁒aβˆ’12,b⁒q/a,b⁒q/c,b⁒q/d,b⁒q/e,b⁒q/f;q,q)=(a⁒q,b/a,a⁒q/(c⁒d),a⁒q/(c⁒e),a⁒q/(c⁒f),a⁒q/(d⁒e),a⁒q/(d⁒f),a⁒q/(e⁒f);q)∞(a⁒q/c,a⁒q/d,a⁒q/e,a⁒q/f,b⁒c/a,b⁒d/a,b⁒e/a,b⁒f/a;q)∞,

where q⁒a2=b⁒c⁒d⁒e⁒f.

Gasper–Rahman q-Analogs of the Karlsson–Minton Sums

17.7.18 Ο•r+1r+2⁑(a,b,b1⁒qm1,…,br⁒qmrb⁒q,b1,…,br;q,aβˆ’1⁒q1βˆ’(m1+β‹―+mr))=(q,b⁒q/a;q)∞⁒(b1/b;q)m1⁒⋯⁒(br/b;q)mr(b⁒q,q/a;q)∞⁒(b1;q)m1⁒⋯⁒(br;q)mr⁒bm1+β‹―+mr,

and

17.7.19 Ο•rr+1⁑(a,b1⁒qm1,…,br⁒qmrb1,…,br;q,aβˆ’1⁒q1βˆ’(m1+β‹―+mr))=0,

where m1,m2,…,mr are arbitrary nonnegative integers.

Gosper’s Bibasic Sum

17.7.20 βˆ‘k=0n1βˆ’a⁒pk⁒qk1βˆ’a⁒(a;p)k⁒(c;q)k(q;q)k⁒(a⁒p/c;p)k⁒cβˆ’k=(a⁒p;p)n⁒(c⁒q;q)n(q;q)n⁒(a⁒p/c;p)n⁒cβˆ’n.

Gasper’s Extensions of Gosper’s Bibasic Sum

17.7.21 βˆ‘k=0n(1βˆ’a⁒pk⁒qk)⁒(1βˆ’b⁒pk⁒qβˆ’k)(1βˆ’a)⁒(1βˆ’b)⁒(a,b;p)k⁒(c,a/(b⁒c);q)k(q,a⁒q/b;q)k⁒(a⁒p/c,b⁒c⁒p;p)k⁒qk=(a⁒p,b⁒p;p)n⁒(c⁒q,a⁒q/(b⁒c);q)n(q,a⁒q/b;q)n⁒(a⁒p/c,b⁒c⁒p;p)n,
17.7.22 βˆ‘k=βˆ’mn(1βˆ’a⁒d⁒pk⁒qk)⁒(1βˆ’b⁒pk/(d⁒qk))(1βˆ’a⁒d)⁒(1βˆ’(b/d))Γ—(a,b;p)k⁒(c,a⁒d2/(b⁒c);q)k(d⁒q,a⁒d⁒q/b;q)k⁒(a⁒d⁒p/c,b⁒c⁒p/d;p)k⁒qk=(1βˆ’a)⁒(1βˆ’b)⁒(1βˆ’c)⁒(1βˆ’(a⁒d2/(b⁒c)))d⁒(1βˆ’a⁒d)⁒(1βˆ’(b/d))⁒(1βˆ’(c/d))⁒(1βˆ’(a⁒d/(b⁒c)))Γ—((a⁒p,b⁒p;p)n⁒(c⁒q,a⁒d2⁒q/(b⁒c);q)n(d⁒q,a⁒d⁒q/b;q)n⁒(a⁒d⁒p/c,b⁒c⁒p/d;p)nβˆ’(c/(a⁒d),d/(b⁒c);p)m+1⁒(1/d,b/(a⁒d);q)m+1(1/c,b⁒c/(a⁒d2);q)m+1⁒(1/a,1/b;p)m+1),

and n-th difference generalization:

17.7.23 (1βˆ’aq)⁒(1βˆ’bq)β’βˆ‘k=0n(a⁒pk,b⁒pβˆ’k;q)nβˆ’1⁒(1βˆ’(a⁒p2⁒k/b))(p;p)n⁒(p;p)nβˆ’k⁒(a⁒pk/b;q)n+1⁒(βˆ’1)k⁒p(k2)=Ξ΄n,0.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy